Как сделать светодиодный индикатор напряжения

Индикатор напряжения на lm339 схемы самоделки

Как сделать светодиодный индикатор напряжения

› Чертежи и схемы

статьи Загрузка…

Лучшие товары с AliExpress ТУТ ⬇

Автомобильные схемы
Автомобильные схемы электрических соединений
Основные обозначения элементов
Определение сопротивления резистора по цветовой маркировке
Калькулятор расчета резистора для светодиодов
Плавное включение и выключение светодиодов на микроконтроллере
Простая схема плавного включения и выключения светодиодов
Стабилизатор тока для светодиодов
Схема регулировки яркости светодиодов (диммер)

Светодиодный индикатор напряжения

Светодиодный индикатор на универсальных поликомпараторных микросхемах, содержащих в одном корпусе по несколько аналоговых компараторов общего назначения. Микросхема LM339, которая в одном корпусе DIP-14 содержит четыре компаратора с полевыми входами. Используя одну LM339 можно сделать четырехпороговый индикатор постоянного напряжения.

На рисунке 1 показана схема такого индикатора с линейной зависимостью измерения. Инверсные входы всех компараторов соединены вместе, — их общая точка является входом индикатора.

На прямые входы подается опорное постоянное напряжение +Uomax через резистивный делитель, обеспечивающий распределение этого напряжения так, чтобы получить необходимый закон измерения.

В данном случае резисторы делителя R2-R5 выбраны одинаковыми, поэтому и зависимость линейная.

Максимальная величина измеряемого напряжения (величина порога, при котором включается светодиод HL4) равна напряжению +Uomax (опорное напряжения максимума).

Это напряжение желательно стабилизировать хотя-бы обычным параметрическим стабилизатором.

Минимальная величина (порог при котором загорается HL1) зависит от сопротивления резистора R5 или от величины опорного напряжения минимума (Uomin).

Например, если нужно производить измерения в каком-то остро зажатом узком интервале напряжений, например, от 10 до 11V, то +Uomax должно быть равно 11V, а Uomin = 10V, при этом сопротивление R5 нужно исключить из схемы. Либо выбрать Uomin равным нулю (как на рисунке 1) и установить R5 такой величины, чтобы напряжение на нем было равно 10V.

Сопротивления R10-R13 нужны для придания компараторным схемам небольшого гистерезиса, улучшающего четкость работы индикатора. Индикаторная шкала состоит из четырех светодиодов HL1-HL4, подключенных к выходам компараторов через токоограничительные резисторы R14-R17.

Чтобы измерять переменное напряжение, например, в схеме индикации аудиосигнала, можно на входе сделать детектор на диодах или операционном усилителе.

Конечно, схема показанная на рисунке 1 несколько сложнее схемы на ВА6884 или другой аналогичной микросхемы, но это усложнение не столь существенно, особенно если нужно получить какую-то специфическую характеристику закона измерения. К тому же в данной схеме можно использовать практически любые доступные в текущий момент аналоговые компараторы или операционные усилители.

Схему, показанную на рисунке 1 можно легко каскадировать чтобы получить практически любое количество порогов измерения. На рисунке 2 показана схема восьмипорогового индикатора на двух микросхемах LM339, то есть, на восьми компараторах.

Схема на рисунке 2 специально показана так, чтобы было видно, как соединить схемы при каскадировании. Входы всех компараторов, сколько бы их ни было нужно соединить вместе, — это будет общий вход, на который поступает напряжение, подлежащее измерению.

Резисторы делителя (R2-R5 и R18-R21) включены последовательно. Если схема на большее число порогов, то и компараторов будет больше и больше будет резисторов в этом делителе. Например, используя четыре микросхемы LM339 можно сделать 16-пороговый индикатор.

Число порогов может быть практически любым, — совсем не обязательно кратным четырем. Все зависит от того, сколько компараторов вы используете.

Например, если использовать в индикаторе уровня для стереоусилителя пять микросхем LM339, можно получить двухканальный шкальный десятипороговый индикатор. При этом, в каждом из каналов будут работать по две микросхемы LM339.

И еще одна LM339, два компаратора которой работают в одном канале, а два других — в другом.

Нагрузочная способность выходов компараторов LM339 не слишком высока, поэтому для получения достаточной яркости индикатора желательно использовать сверх-яркие светодиоды. Либо сделать выходы на дополнительных ключах — усилителях, но это приводит к существенному усложнению схемы.

Светодиод как индикатор сетевого напряжения?

Как сделать светодиодный индикатор напряжения

Во многие электронно-технические устройства монтируются светодиоды. Они надежные, компактные и экономичные, поэтому являются основными элементами в индикаторах напряжения на светодиодах. Конструкция простейших приборов не сложная, их можно сделать самостоятельно. Собрать небольшое количество деталей может даже начинающий радиолюбитель.

Общееустройство и принцип работы

Световыми индикаторами называютуказатели, работающие на основе источника света. Светодиодные приборы работают засчет светового излучения из p-n-перехода при прохождении через него тока.

В быту используются переносные приборыдля индикации, в том числе мультиметры. Основное предназначение – определениеналичия/отсутствия тока и разности значений напряжения. Вольтаж зависит от типаприбора, по конструкции индикаторы бывают одно- и двухполюсные. При первомварианте токоведущая часть одна, при втором – две.

В магазинах продаются простые тестеры в виде авторучек и отверток. Конструкция размещается в корпусе из диэлектрика со смотровым окошком. Основные элементы: светодиод и резистор. Снизу располагается щуп, сверху металлический контакт для касания рукой.

Эти приборы позволяют:

  • определитьноль и фазу;
  • вольтажна предохранительном оборудовании.

Справка! Двухполюсные индикаторы позволяют работать с постоянным и переменным током, их функционал выше.

Однополюсные тестеры-отвертки делятсяна:

  • пассивные;
  • сдополнительными функциями;
  • срасширенным функционалом.

Пассивный тестер используется дляопределения наличия напряжения в электрооборудовании и проводке. Для контактаиспользуется плоская отвертка, сопротивление создает схема в ручке. Светодиодзагорается при прикосновении к детали, по которой течет ток.

Преимущества пассивной отвертки:

  • простаяконструкция;
  • нетребуется источник питания;
  • нетребуются специальные знания.

Недостатка два: тусклое свечение светодиода и необходимость во время тестирования снять перчатки.

Прибор с дополнительным функционаломможно использовать в двух режимах: бесконтактном и контактном. Определяетсяналичие напряжения, можно проверить провода, кабели, предохранители.

Запитывается такой тестер от батареек. Ноль и фаза определяется так же, как спассивной отверткой. При тестировании бесконтактным методом прибор держится, некасаясь нижней части.

К проводнику подносится верхняя часть.

Важно! Прикасаться к проводнику не нужно. Если светодиод загорелся, проводка (предохранитель) цела.

Индикаторы с расширенным функционаломцифровые. Сделать что-то подобное самостоятельно невозможно.

Большинство двухконтактных индикаторовпрофессиональные. По функционалу они почти не отличаются от одноконтактных. Этиприборы оснащены двумя щупами, на концах которых острые штыри. В процессетестирования можно узнать значение напряжения (параметр отображается на экране).

Схемыиндикатора напряжения своими руками

Основная функция индикатора напряжения вбыту – определить целостность электросети. Для радиолюбителя важна возможностьопределить параметры и прозвонить даже неработающие электроприборы. Своимируками можно сделать только первый тип индикаторов. Опытный радиолюбитель можетсделать индикатор, позволяющий прозванивать провода.

В быту часто используются самодельные пробники (контрольки), реже – мультиметры. Контролька – это лампочка накаливания в патроне, провода выполняют роль щупов. Она позволяет не только определить наличие/отсутствие тока, но и вольтаж по яркости свечения. Сделать что-то подобное со светодиодной лампой не получится.

Мультиметр позволяет определить всепараметры сразу, так как выполняет функции вольтметра, амперметра и омметра. Имможно определить емкость конденсаторов, проверять транзисторы и диоды. Такойприбор сделать нельзя, его нужно купить.

Работас сетью 220 В

Самый простой указатель напряжения электросети без источника питания делается из резистора, ограничителя тока (транзистора), выпрямителя (диода) и любого светодиода. Сопротивление резистора 100 – 150 кОм.

Характеристики диода:

  • ток10-100 мА;
  • напряжение1-1,1 В;
  • обратноенапряжение 30-75 В.

Важно! Для изготовления такого индикатора плата не обязательна.

При 220 В частоте 3 Гц светодиодзагорается. Корректировать частоту и повысить яркость можно изменением емкостиконденсатора. Такой индикатор срабатывает при минимальном напряжении 4,5 В.Кроме тока сети он может определить исправность, включенное и выключенноесостояние электроприбора.

Проверкапостоянного напряжения

Для проверки сети на 12 вольт и целостности соединений можно сделать другой светодиодный индикатор (нужны 2 разноцветных светодиодных элемента). Для ограничения тока можно использовать резистор с сопротивлением 50-100 Ом или лампочку накаливания с небольшой мощностью. Один из светодиодов загорается при подключении напряжения соответствующей полярности.

Всамодельный индикатор для сети 12 В можно добавить конденсатор, диод и 2 транзистора. Полевой транзистор стабилизирует ток. Конденсатор, защищающий диод от скачков напряжения, нужен с емкостью 0,1 мкФ, неполярный.

Резистор с сопротивлением 1 Мом является нагрузкой биполярного транзистора. При проверке сети с постоянным напряжением диод проверяет полюса. Если ток переменный, этот элемент срезает минусовую половину.

При подаче напряжения значение тока определяет биполярный транзистор и сопротивление резистора (500-600 Ом).

Такой прибор подходит для работы с переменной и постоянной сетью с напряжением 5-600 В.

Индикатордля микросхем – логический пробник

Приборы для индикации микросхем называются логическими пробниками. Такой индикатор трехуровневый (в схему включаются 3 светодиода).

Логический пробник дает возможность:

  • определитьфазу, короткое замыкание, сопротивление электросети;
  • установитьналичие напряжения 12 – 400 В;
  • определитьполюса при постоянном токе;
  • проверитьсостояние диодов, транзисторов и других деталей;
  • определитьцелостность электросети прозвоном;
  • диагностироватьобрывы реле и катушек;
  • прозвонитьдроссели и моторы;
  • определитьвыводы трансформаторов.

Важно! Такой прибор не способен функционировать при напряжении до 4 В.

Источник питания батарейка на 9 В. Призамкнутых щипах потребляется ток 110 мА. После размыкания ток не потребляется,устанавливать выключатель и переключатель режимов не нужно.

При проверке сети с сопротивлением 0 –150 Ом горят 2 светодиода, при повышении показателя один. При 220-380 вольтахзагорается третий, остальные мерцают. Если цепь порвана, светодиоды незагораются. При нуле на контакте 0,5 В, открывается один транзистор (КТ315Б),при 2,4 В – второй (КТ203Б).

Допускается замена транзисторов на другие, имеющие аналогичные параметры.

Индикаторнапряжения на двухцветном светодиоде

Еще одна простая микросхема индикатора – с двухцветным светодиодом. Некоторые домашние мастера используют ее для определения режима работы лампы. Например, выключатель осветительного прибора в подвале, оснащенный индикатором, установлен на лестнице. Если она горит, свечение красное, после выключения – зеленое.

Важно! Если лампа перегорела, после нажатия на выключатель красный светодиод не горит. Перед походом в подвал необходимо найти замену.

Вариантдля автомобиля

Схемадля индикации заряда аккумулятора и напряжения сети автомобиля состоит из:

  • RGB-светодиода;
  • 3-хстабилитронов;
  • 3-хбиполярных транзисторов (BC847C);
  • 9-ирезисторов;

Уровень определяется по цвету. Зеленое свечение при 12-14 В, синее – при 11,5 В, красное – при 14,4 В).

Если при сборке схемы не допущены ошибки, один из резисторов (на 2,2 кОм) и транзистор (на 8,2 В) определяют минимальный предел вольтажа. При снижении показателя транзистор, соответствующий синему свечению, подключает кристалл.

Если вольтаж не снижается и не повышается, ток проходит через 2 резистора, стабилитрон на 5,6 В и светодиод, появляется свечение зеленого цвета (транзисторы, соответствующие красному и синему цвету, закрываются). При повышении напряжения до 14,4 В загорается красный свет.

Основныевыводы

Самостоятельно делают индикаторы попростым схемам. Никакие другие дорогостоящий детали не требуются. Дляизготовления пробника можно использовать корпус высохшего маркера илинеисправного мобильного телефона. На лицевую часть можно вывести щуп в видештыря, на торец – кабель, оснащенный зажимом-«крокодильчиком» или щупом.

Источник: https://svetilnik.info/svetodiody/indikator-napryazheniya-na-svetodiodah.html

Индикаторы напряжения

Электрическое напряжение невидимо и часто опасно. Это, безусловно, относится к электросети. Поэтому электрики и домашние хозяева, которым приходится чинить приборы и электропроводку, должны использовать специальные пробники для обнаружения высокого напряжения, мест прокладки проводки и проверки целостности участков проводки. Они помогут найти фазу и ноль.

Пробник для проверки фазного напряжения

Электриками часто используется индикаторная отвёртка. Это небольшая отвертка, довольно «слабая» на вид, неспособная затянуть винты с большим моментом. Но у нее другое назначение. Это индикатор фазы сети. Фазные провода сети находятся под повышенным напряжением относительно земли и нулевого провода, смертельно опасным для человека.

Отвертка индикаторная — это простой и надежный тестер напряжения. Она не позволяет измерять напряжение, но безошибочно говорит о наличии напряжения, которое МОЖЕТ быть опасным. Наиболее распространен индикатор на основе неоновой лампочки. Это классика, конкурировать с которой очень сложно, и вот почему:

  • Простота устройства,
  • Высокая надежность,
  • Высокая чувствительность,
  • Дешевизна.

Индикатор напряжения на светодиодах своими руками: схемы с описанием

Как сделать светодиодный индикатор напряжения

Светодиоды давно применяется в любой технике из-за своего малого потребления, компактности и высокой надежности в качестве визуального отображения работы системы.

Индикатор напряжения на светодиодах это полезное устройство, необходимое любителям и профессионалам для работы с электричеством.

Принцип используется в подсветках настенных выключателей и выключателей в сетевых фильтрах, указателях напряжения, тестерных отвертках. Подобное устройство можно сделать своими руками из-за его относительной примитивности.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

  • светодиод;
  • резистор;
  • диод.

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В.

Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора.

Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2).

Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке.

Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА.

Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В. Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока. Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1).

Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В.

Что касается светодиода (HL), то выбирайте сверхъяркий, для того, чтобы его свечение при минимальных токах было заметно.

Автомобильный индикатор напряжения

Среди областей, где применение индикатора напряжения на светодиодах имеет неоспоримую пользу, можно выделить эксплуатацию автомобильного аккумулятора. Для того чтобы аккумулятор служил долго, необходимо контролировать напряжение на его клеммах и поддерживать в заданных пределах.

Предлагаем вам обратить внимание на схему автомобильного индикатора напряжения на RGB-светодиоде, с помощью которой вы поймете, как изготовить устройство самостоятельно. RGB-светодиод отличается от обычного, наличием 3-х разноцветных кристаллов внутри своего корпуса. Данное свойство мы будем использовать для того, чтобы каждый цвет сигнализировал нам об уровне напряжения.

Схема состоит из девяти резисторов, трех стабилитронов, трех биполярных транзисторов и одного 3-цветного светодиода. Обратите внимание, какие элементы рекомендуется выбирать для реализации схемы.

  1. R1=1, R2=10, R3=10, R4=2.2, R5=10, R6=47, R7=2.2, R8=100, R9=100 (кОм).
  2. VD1=10, VD2=8.2, VD3=5.6 (В).
  3. VT – BC847C.
  4. HL – LED RGB.

Результат такой системы следующий. Светодиод загорается:

  • зеленым – напряжение 12-14 В;
  • синим – напряжение ниже 11,5 В;
  • красным – напряжение свыше 14,4 В.

Это происходит за счет правильно собранной схемы. С помощью потенциометра (R4) и стабилитрона (VD2) выставляется низший предел напряжения. Как только разность потенциалов между клеммами батареи становится меньше указанного значения – транзистор (VT2) закрывается, VT3 открывается, синий кристалл индуцирует.

Если напряжение на клеммах находится в указанном диапазоне, то ток проходит через резисторы (R5,R9), стабилитрон (VD3), светодиод (HL), естественно, светит зеленым, транзистор (VT3) находится в закрытом состоянии, а второй (VT2) – в открытом.

С помощью настройки переменного резистора (R2), превышение напряжения больше 14,4 В будет отображаться свечением светодиода красного цвета.

Индикатор напряжения на двухцветном светодиоде

Еще одна популярная схема индикации, это схема с использованием двухцветного светодиода для отображения степени заряда батареи или же сигнализации о включении или выключении лампы в другом помещении.

Это может быть очень удобно, например, если выключатель света в подвале расположен до лестницы ведущей вниз (кстати, не забудьте прочитать интересную статью о том как сделать подсветку лестницы светодиодной лентой).

До того как спуститься туда, вы зажигаете свет, и индикатор загорается красным, в выключенном состоянии вы видите зеленое свечение на клавише. В этом случае вам не придется заходить в темную комнату и уже там нащупывать выключатель.

Когда вы покинули подвал, вы по цвету светодиода знаете, горит свет в подвале или нет. Одновременно с этим, вы контролируете исправность лампочки, потому что в случае ее перегорания, красным светодиод светиться не будет. Вот схема индикатора напряжения на двухцветном светодиоде.

В заключении можно сказать, что это лишь основные возможные схемы использования светодиодов для индикации напряжения. Все они несложные, и в своей реализации под силу даже дилетанту.

В них не использовалось никаких дорогостоящих интегральных микросхем и тому подобное.

Рекомендуем обзавестись таким устройством всем любителям и профессионалам электрикам, чтобы никогда не подвергать свое здоровье опасности, приступая к ремонтным работам, не проверив наличие напряжения.

Индикатор напряжения на светодиодах своими руками

Как сделать светодиодный индикатор напряжения

Проверка напряжения в цепи – процедура, необходимая при выполнении различного рода работ, связанных с электричеством. Некоторые любители-электрики, а иногда и профессионалы пользуются для этого самодельной «контролькой» – патроном с лампочкой, к которому подсоединены провода.

Хотя такой метод запрещен «Правилами безопасной эксплуатации электроустановок потребителей», он достаточно эффективен при грамотном использовании. Но все же в этих целях лучше пользоваться светодиодными определителями – пробниками. Их можно купить в магазине, а можно изготовить самостоятельно.

В этой статье мы расскажем, для чего нужны эти приборы, по какому принципу они работают и как изготовить индикатор напряжения на светодиодах своими руками.

Для чего нужен логический пробник?

Это устройство с успехом применяется, когда необходимо произвести предварительную проверку работоспособности элементов простой электрической схемы, а также для первичной диагностики несложных приборов – то есть в тех случаях, когда не требуется высокая точность измерений. С помощью логического пробника можно:

  • Определить наличие в электроцепи напряжения величиной 12 – 400 В.
  • Определить полюса в цепи постоянного тока.
  • Произвести проверку состояния транзисторов, диодов и других электрических элементов.
  • Определить фазную жилу в электроцепи переменного тока.
  • Прозвонить электрическую цепь для проверки ее целостности.

Наиболее простыми и надежными приборами, с помощью которых производятся перечисленные манипуляции, являются индикаторная отвертка и звуковая отвертка.

Пробник электрика: принцип работы и изготовление

Простой определитель на двух светодиодах и с неоновой лампочкой, получивший среди электриков название «аркашка», несмотря на несложное устройство, позволяет эффективно определять наличие фазы, сопротивления в электроцепи, а также обнаруживать в схеме КЗ (короткое замыкание). Универсальный пробник для электрика в основном используется для:

  • Диагностики на обрыв катушек и реле.
  • Прозвонки моторов и дросселей.
  • Проверки выпрямительных диодов.
  • Определения выводов на трансформаторах с несколькими обмотками.

Это далеко не полный перечень задач, которые решают с помощью пробника. Но и перечисленного достаточно, чтобы понять, насколько полезно это устройство в работе электромонтера.

В качестве источника питания для этого устройства используется обычная батарейка с показателем напряжения 9 В. Когда щупы тестера замкнуты, величина потребляемого тока не превышает 110 мА. Если же щупы разомкнуты, то устройство не потребляет электроэнергию, поэтому ему не нужен ни переключатель режима диагностики, ни выключатель энергопитания.

Пробник способен выполнять свои функции в полной мере, пока напряжение на источнике питания не падает ниже 4 В. После этого его можно использовать в качестве указателя напряжения в цепях.

Во время прозвонки электрических цепей, показатель сопротивления которых составляет 0 – 150 Ом, загорается два светоизлучающих диода – желтого и красного цвета.

Если показатель сопротивления составляет 151 Ом – 50 кОм, то светится только желтый диод.

Когда на щупы прибора подается напряжение сети величиной от 220 В до 380 В, начинает светиться неоновая лампа, одновременно с этим наблюдается легкое мерцание LED-элементов.

Схема этого индикатора напряжения имеется в интернете, а также в специализированной литературе. Изготавливая такой пробник своими руками, его элементы устанавливают внутри корпуса, который изготовлен из изоляционного материала.

Зачастую для этих целей используется корпус от ЗУ любого мобильного телефона или планшетного компьютера. С передней части корпуса следует вывести штырь-щуп, с торцевой – качественно изолированный кабель, конец которого снабжен щупом или зажимом-«крокодильчиком».

Сборка простейшего пробника напряжения со светодиодным индикатором – на следующем видео:

Как изготовить эвуковой пробник электрика своими руками?

У некоторых запасливых любителей в «арсенале» можно найти множество полезных вещей, в том числе и наушник (капсюль) для телефона ТК-67-НТ.

Подойдет и другое аналогичное устройство, снабженное металлической мембраной, внутри которого расположена пара последовательно соединенных катушек.

На базе такой детали может быть собран несложный звуковой пробник.

В первую очередь нужно разобрать телефонный капсюль и отсоединить катушки друг от друга. Это нужно для того, чтобы освободить их выводы.

Элементы размещаются в наушнике под звуковой мембраной, около катушек.

После сборки электрической цепи мы получим вполне рабочий определитель со звуковой индикацией, который возможно применять, к примеру, в целях проверки дорожек печатных схем на взаимное перемыкание.

База такого пробника – электрогенератор с индуктивной противоположной взаимосвязью, основными деталями которого является телефон и транзистор малой мощности (лучше всего германиевый).

Если такого транзистора у вас нет, то можно воспользоваться другим, обладающим проводимостью N-P-N, однако в этом случае полярность включения источника электропитания следует поменять.

Если включить генератор не получается, выводы одной (любой) катушки нужно поменять между собой местами.

Увеличить громкость звука можно, выбрав частоту электрогенератора таким образом, чтобы она была максимально приближена к резонансной частоте наушника. Для этого мембрану и сердечник нужно расположить на соответствующем расстоянии, изменяя интервал между ними до получения нужного результата. Теперь вы знаете, как сделать индикатор напряжения на базе телефонного наушника.

Наглядно изготовление и использование простейшего пробника напряжения на видео:

Заключение

В этом материале мы рассказали, как индикатор напряжения на светодиодах можно собрать своими руками, а также рассмотрели вопрос изготовления простого диагностического прибора на базе звукового наушника.

Как видите, самостоятельно собрать светодиодный индикатор, как и звуковой определитель, достаточно несложно – для этого достаточно иметь под рукой паяльник и нужные детали, а также обладать минимальными электротехническими знаниями. Если же вы не очень любите самостоятельно собирать электрические устройства, то при выборе прибора для несложной диагностики стоит остановиться на обычной индикаторной отвертке, которая продается в магазинах.

Как сделать индикатор напряжения на светодиодах

Как сделать светодиодный индикатор напряжения

Светодиоды широко применяются во многих электронно-технических устройствах, благодаря незначительному энергопотреблению. Они отличаются компактными размерами, высокой надежностью и качественным светом.

Эти свойства дали возможность сделать намного удобнее отображение всех функций оборудования, приборов и устройств. Среди них следует отметить индикатор напряжения на светодиодах, используемый при работе с электрическим током.

Устройство индикатора совсем несложное, поэтому его легко изготовить собственными силами.

Общее устройство и принцип работы

Светодиоды являются одной из основных деталей индикаторов напряжения в сети. В ходе тестирования они наглядно демонстрируют наличие или отсутствие электрического тока на проверяемом участке.

Схемы простейших индикаторов состоят из минимального количества деталей и легко собираются даже начинающими радиолюбителями. На представленном рисунке отображается конструкция прибора, предназначенного для определения фазного проводника или контакта.

Данная схема широко используется в индикаторных отвертках.

Им не требуется собственного источника питания, так как величины потенциала, образующегося между фазой и голой рукой, вполне хватает, чтобы началось свечение диода.

Светодиодный индикатор напряжения, предназначенный для работы в сети 220 В, дополняется емкостным сопротивлением, ограничивающим ток, поступающий к лампочке. От обратной полуволны защита обеспечивается диодом.

При проверке низковольтных цепей до 12 вольт ограничителем тока нередко выступает лампа накаливания малой мощности или резистор, с сопротивлением от 50 до 100 Ом. При работе с более высоким напряжением мощность резистора должна быть увеличена.

Радиолюбители для проверки микросхем часто используют простейшее устройство, в котором имеются три стабильные позиции. Если цепь оборвана и сигнал отсутствует, диоды не будут светиться. В других случаях при разных токах загораются определенные светодиодные лампочки.

Подобное разделение осуществляется с помощью транзисторов с различным напряжением открытия. Например, когда ток составляет 0,5 В, открывается первый транзистор, а при 2,4 В открывается второй.

Если возникает необходимость работы с другими токами, необходимо использовать транзисторы с соответствующими характеристиками.

Таким образом, довольно легко изготовить указатель напряжения на светодиодах своими руками. Эта и другие схемы используются достаточно часто, поэтому их стоит рассмотреть более подробно.

Простая схема индикатора

Схема с применением транзисторных элементов и сопротивлений используется в указателях, работающих с постоянным и переменным напряжением до 600 вольт.

Подобная конструкция несколько сложнее, сравнительно с индикаторной отверткой, однако добавление деталей делает указатель напряжения на светодиодах универсальным инструментом.

Его можно совершенно безопасно использовать для проверки напряжения в диапазоне от 5 до 600 вольт.

На представленной схеме хорошо просматривается полевой транзистор VT2, который служит основой всей конструкции индикатора. Срабатывание устройства зависит от порогового значения напряжения, зафиксированного разностью потенциалов в положении затвор-исток.

Величина максимально возможных сетевых напряжений находится в зависимости от падения потенциала в позиции сток-исток. По своей сути этот транзистор является своеобразным стабилизатором тока. Транзистор VT1 является биполярным, используемым для обратной связи и поддержки заданных параметров.

Самодельный индикатор функционирует следующим образом. Когда на вход подается напряжение, в контуре появляется электрический ток. Его величина зависит от сопротивления R2 и напряжения биполярного транзистора VT1 в переходе база-эмиттер.

Свечение маломощного светодиода вполне возможно при стабилизирующем токе в 100 мкА. При напряжении в база-эмиттер около 0,5 вольт, сопротивление R2 должно находиться в пределах от 500 до 600 Ом.

От возможных скачков тока светодиод защищен неполярным конденсатором С, емкость которого составляет 0,1 мкФ.

Мощность резистора R1 составляет 1 Мом, что вполне достаточно для использования его в качестве нагрузки транзистора VT1. При работе с постоянным напряжением диод VD выполняет защитную функцию и проверку полюсов.

Когда проверяется переменное напряжение, этот диод становится выпрямителем и служит для срезания отрицательной полуволны. Величина его обратного напряжения составляет не менее 600 вольт.

Сам светодиод HL следует выбирать с наибольшей яркостью, чтобы сигнал был заметен даже при минимальном токе.

Указатель напряжения для аккумуляторных батарей

Срок службы автомобильного аккумулятора значительно продлевается, если на его клеммах проводится регулярный контроль напряжения. В случае каких-либо отклонений можно принять своевременные меры и избежать негативных последствий.

Предлагаемая схема функционирует на светодиоде RGB, отличающемся от обычных источников света тремя кристаллами разных цветов, расположенными внутри корпуса. В процессе работы каждый цвет будет соответствовать определенному значению напряжения.

Для создания индикатора понадобится 9 резисторов, три стабилитрона, 3 биполярных транзистора и 1 разноцветный светодиод. После правильной сборки сигнал будет зеленого цвета при напряжении 12-14 вольт, красного цвета – более 14,4 В, синего цвета – менее 11,5 В. Чтобы выставить минимальный предел напряжения используется потенциометр R4 и стабилитрон VD2.

В случае снижения разности потенциалов ниже установленного значения, происходит закрытие транзистора VT2, а транзистор VT3, наоборот, будет открываться, индуцируя кристалл диода синего цвета.

Если напряжение в норме и находится в заданных пределах, ток будет проходить через резисторы R5, R9 и через стабилитрон VD3. В это время светодиод будет светиться зеленой индикацией. Транзистор VT3 будет закрыт, а VT2 – открыт.

Резистор R2 является переменным и позволяет настроить напряжение, в том числе и в сторону увеличения более 14,4 В. В этом случае сражу же загорается красный свет.

Схема индикатора напряжения (контрольки) на светодиодах для сборки своими руками

Как сделать светодиодный индикатор напряжения

Светодиоды отлично зарекомендовали себя в роли различных индикаторов. В качестве примера, можно привести промышленно выпускаемый индикатор напряжения «Контакт-55ЭМ».

Среди аналогичных приборов, которые можно легко сделать своими руками, авторы обычно ограничиваются узким диапазоном возможного измеряемого напряжения с целью упрощения схемы, поэтому готовые изделия имеют узкое практическое применение.

Ниже приведенная универсальная схема светодиодной контрольки, которая будет работать как, например, с постоянной автомобильной сетью 12 В, так и с переменной бытовой 220 В.

Схема

Предлагаемая конструкция светодиодного индикатора напряжения, так называемой контрольки, собрана на одном светодиоде.

Прибор способен сигнализировать о напряжении от 4,5 до 600 В с током потребления от измеряемой сети не более 1 мА.

Простота и универсальность схемотехнического решения достигнута, благодаря включению MOSFET транзистора по схеме стабилизатора тока. Работает устройство без батареек.

Назначение элементов и принцип работы

Как видно из рисунка, схема индикатора собрана всего на семи элементах. «Сердцем» устройства является полевой транзистор VT2, включенный как стабилизатор тока и способный выдерживать напряжение до 600 В на переходе сток-исток. В свою очередь на транзисторе VT1 собрана цепь обратной связи стабилизатора, направленная на поддержание тока заданной величины.

Светодиодная контролька работает следующим образом. При касании измерительными щупами контактов под напряжением, в схеме начинает протекать ток, величина которого зависит от напряжения перехода база-эмиттер VT1 (UБЭ) и от сопротивления резистора R2.

Так как значение UБЭ открытого транзистора является константой, то ток стабилизации можно определить по формуле: IСТ = UБЭ/R2. Как правило, UБЭ маломощных транзисторов находится в пределе 0,5-0,6 В. Подставляя в формулу R2 номиналом 560 Ом, получаем ток стабилизации равный примерно 1 мА.

Как показывают практические испытания, этого достаточно, чтобы слаботочный светодиод засветился.

Мегаомный резистор R1 служит нагрузкой для VT1, а конденсатор С1 дополнительно защищает светодиод от возможных негативных бросков тока. При проверке переменного напряжения диод VD1 служит выпрямителем, а при замере постоянного – служит защитой от переполюсовки.

Рабочий диапазон устройства определяется техническими характеристиками полевого  транзистора. Минимальный порог срабатывания индикатора зависит от напряжения затвор-исток, которое может быть от 2 до 4 вольт. Это означает, что прибор просигнализирует о наличии разницы потенциалов, величиною более 4 вольт. Максимум измеряемого напряжения ограничен параметром UСИ = 600 В.

Нюансы в работе индикатора напряжения

Наличие в схеме светодиодного индикатора диода VD1 позволяет определять полярность напряжения в цепях постоянного тока. Если коснуться щупом, припаянным к аноду VD1, плюсового провода, а щупом, припаянным к эмиттеру VT1, минусового провода, то светодиод засветится. Если щупы поменять местами, светодиодный индикатор ничего не покажет.

При проверке напряжения в цепях переменного тока соблюдение полярности не требуется. Светодиод засветится в обоих случаях, но с меньшей яркостью, так как отрицательную часть полуволны не пропустит диод.

Детали сборки

В качестве полевого транзистора используется Power MOSFET IRC40 с UСИ = 600 В, UЗИ = 2–4 В. Он является самым дорогим элементом схемы с ценником чуть более 1 доллара.

Биполярный транзистор – это всем известный КТ315Б, который можно заменить на КТ3102 с любым буквенным индексом. Диод подойдет любой с обратным напряжением более 600 В, например, 1N4005-1N4007.

Конденсатор должен быть неполярным ёмкостью 0,1 мкФ.

Выбор светодиода имеет важное значение. От его способности светиться на малых токах зависит правильность работы индикатора в целом. Поэтому рекомендуется применять к установке сверхъяркий светодиод в прозрачном корпусе 3-5 мм красного свечения.

Не стоит забывать об электрической прочности резисторов, на которых во время замера может появляться потенциал в несколько сотен вольт.

Предельное рабочее напряжение непроволочных резисторов может колебаться от 100 до 1000 В и во многом зависит от длины самого элемента. Поэтому миниатюрные планарные компоненты придётся оставить для других целей, а здесь лучше применить сопротивление типа МЛТ-0,25.

Для повышения надежности во время монтажа R1 и R2 делают составными, заменяя каждый из них двумя последовательно включенными элементами.

Печатная плата

Один из возможных вариантов печатной платы контрольки со светодиодом приведен на рисунке.

Плата в файле Sprint Layout 6.0: plata-indikatora.lay6

Плата выполнена из одностороннего текстолита с использованием деталей в DIP-корпусах. Светодиод для удобства размещают в торце платы. Широкие контактные площадки нужны для надёжного контакта деталей.

Имея удлиненную форму размером 12 на 60 мм, готовая сборка легко помещается в корпусе из-под толстого фломастера или маркера. С одного торца располагают светодиод, а с другого выводят два измерительных провода со щупами на концах.

Отверстия для проводов обозначены надписью (Control).

Уверен, что данный индикатор напряжения станет верным помощником как мастеру-электрику, так и рядовому хозяину в своём доме.

[block id=”3″]

Как сделать светодиодный индикатор напряжения?

Как сделать светодиодный индикатор напряжения

Сигнальные светодиоды (в англоязычной литературе – LED, light-emitting diode) потребляют ток величиной 10-15 мА. В зависимости от цвета прямое падение напряжения на светоизлучающем диоде составляет от 1,5 до 2,5 В. Небольшие размеры, малый ток потребления и низкое рабочее напряжение LED позволяют радиолюбителям изготовить множество полезных приборов.

Используя минимальный набор деталей, можно изготовить индикатор напряжения на светодиодах своими руками.

Назначение элементов и принцип работы схемы

У многих читателей в доме установлены выключатели света со светодиодной подсветкой. Схема светодиодной подсветки выглядит следующим образом:

  1. Параллельно контакту выключателя включается цепочка, состоящая из гасящего резистора, светодиода и простого кремниевого диода.
  2. При разомкнутом выключателе электрический ток протекает через гасящий (токоограничивающий) резистор, включенные встречно-параллельно светодиоды и лампу накаливания.
  3. Во время одной из полуволн, когда положительное напряжение приложено к аноду LED, светоизлучающий диод светится. Тем самым не только обеспечивается подсветка выключателя, но и осуществляется светодиодная индикация напряжения.

Если убрать из схемы выключатель, лампочку и провода, у нас останется цепочка, состоящая из резистора и двух диодов. Эта цепочка представляет собой простейший индикатор (указатель) переменного тока 220 В.

Остановимся подробнее на назначении элементов схемы. Выше мы указывали, что рабочий ток сигнального LED составляет около 10-15 мА.

Понятно, что при непосредственном подключении светоизлучающего диода к сети 220 В через него будет протекать ток, во много раз превышающий предельно допустимое значение.

Для того чтобы ограничить ток LED, последовательно с ним включают гасящий резистор. Рассчитать номинал резистора можно по формуле:

R = (U max – U led) / I led

В ней:

  • U max – максимальное измеряемое напряжение;
  • U led – падение напряжения на светодиоде;
  • I led – рабочий ток светоизлучающего диода.

Выполнив простейший расчет, для сети 240 В мы получим номинал резистора R1 равный 15-18 кОм. Для сети 380 В нужно применить резистор, имеющий сопротивление 27 кОм.

Кремниевый диод выполняет функцию защиты от перенапряжения. Если он отсутствует, при отрицательной полуволне U на запертом светодиоде будет падать 220 В или 380 В. Большинство светоизлучающих диодов не рассчитано на такое обратное напряжение.

Из-за этого может произойти пробой p-n перехода LED. При встречно-параллельном подключении кремниевого диода, во время отрицательной полуволны он будет открыт и U на светодиоде не превысит 0,7 В.

LED будет надежно защищен от высокого обратного напряжения.

На основе рассмотренной схемы можно сделать индикатор напряжения 220/380 В. Достаточно дополнить радиоэлементы двумя щупами и поместить их в подходящий корпус. Для изготовления корпуса индикатора подойдет большой маркер или толстый фломастер. Можно разместить радиодетали на самодельной печатной плате или выполнить соединения навесным способом.

В маркере проделывают отверстие, в которое вставляют светодиод. На одном конце корпуса закрепляют металлический щуп. Через второй конец корпуса пропускают провод, идущий ко второму щупу или изолированному зажиму «крокодил».

Несмотря на простоту конструкции, устройство позволит проверять наличие напряжения на выходе автоматического выключателя или в розетке, найти сгоревший предохранитель в распределительном щите. Заметим, что приведенная схема индикатора применяется и в промышленных изделиях.

Проверка постоянного напряжения

Рассмотренная нами схема индикатора может применяться не только в цепях переменного, но и в цепях постоянного тока.

В случае если мы прикоснемся к «плюсу» щупом, присоединенным к аноду светодиода, а другим щупом будем касаться «минуса» электроустановки, индикатор будет светиться. При противоположном подключении указателя LED «не загорится».

Таким образом, мы не только сможем проверить наличие напряжения, но и определим полярность источника.

Простейшая схема индикатора напряжения на светодиодах может быть улучшена. Для этого в нее нужно внести одно изменение: заменить кремниевый диод на светодиод.

После этой замены у индикатора, подключенного к переменному напряжению, будут светиться оба светодиода одновременно. При проверке наличия постоянного напряжения будет светиться один из светодиодов.

Какой из LED будет светиться, зависит от полярности подключения индикатора.

Если индикатор может светиться разными цветами, то по умолчанию зеленые светодиоды означают нормальный режим работы, например правильную полярность.

Индикатор для микросхем – логический пробник

Научившись создавать простейший пробник электрика своими руками, на основе LED также можно сделать простой логический пробник, который поможет отыскать неисправности в цифровых устройствах.

Логические пробники появились на заре вычислительной техники. При помощи них специалисты анализировали логические уровни на входах и выходах цифровых микросхем. Высокому уровню (напряжению) на выходе логического элемента присваивается значение логической «единицы», а низкому уровню – логического «нуля». Сопоставляя уровни на входе и выходе цифровой микросхемы, можно судить о ее исправности.

Для индикации «0» или «1» достаточно двух светодиодов. Поэтому светодиодные логические пробники имеют простую конструкцию. Для сборки простейшего логического пробника понадобятся:

  • 2 транзистора VT1 и VT2 n-p-n структуры;
  • 2 светоизлучающих диода;
  • несколько резисторов.

На транзисторах собирают 2 усилительных каскада с общим эмиттером. Усилительные каскады должны иметь непосредственную связь. В цепь коллектора транзисторов включают светодиоды красного и зеленого цвета.

Логический пробник работает следующим образом:

  1. При подаче логической единицы на вход пробника открывается транзистор VT1 и загорается красный светодиод. При этом VT2 оказывается запертым и зеленый светодиод не горит.
  2. При подаче на вход логического нуля VT1 запирается, при этом открывается транзистор VT2 и загорается зеленый LED.

Если на выходе проверяемого устройства с большой скоростью чередуются логические «0» и «1», то визуально будет казаться, что оба светодиода горят одновременно.

Рассмотренный пробник можно применять для проверки устройств, собранных как на микросхемах ТТЛ логики, так и на КМОП-микросхемах. При использовании прибора его питают от проверяемой схемы.

Вариант для автомобиля

Раньше в различных «контрольках» автоэлектриков в качестве индикатора применялась маломощная лампочка 12 Вольт. С ее помощью осуществлялась проверка напряжения в различных частях бортовой сети автомобиля. Сейчас в большинстве промышленных и самодельных индикаторов 12 В используются светодиоды.

Конструкция таких приборов практически ничем не отличается от первого рассмотренного индикатора. Чтобы переделать первый указатель на 12 В, нужно исключить простой диод или заменить его на двухцветный LED. Гасящий резистор при 12 В должен иметь сопротивление 680 Ом.

Так выглядит применение светодиодов в индикаторах различного назначения. Однако на основе LED можно сделать множество других устройств, которые будет отличать простота, экономия и надежность.

Индикаторные и сверхъяркие светодиоды можно применить для освещения или подсветки разных объектов.

Используя LED в качестве источника опорного напряжения, можно построить параметрический стабилизатор напряжения.



Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.