Работа прибора варистор: использование и принципы эксплуатации, маркировка и фото применения

Варистор: принцип работы, характеристики, применение и схемы

Работа прибора варистор: использование и принципы эксплуатации, маркировка и фото применения

В данной статье мы подробно разберем что такое варистор. Опишем принцип его работы и конструкцию, области применения, характеристики, а так же типы.

Описание и принцип работы

В отличие от плавкого предохранителя или автоматического выключателя, который обеспечивает защиту от перегрузки по току, варистор обеспечивает защиту от перенапряжения посредством фиксации напряжения аналогично стабилитрону. Купить варистор на Алиэкспресс:

Слово «варистор» представляет собой сочетание слов VARI-able resi-STOR, используемыми для описания их режима работы еще в первые дни развития, который является немного неверным, так как варистор не может вручную изменять как, например потенциометр или реостат.

Но в отличие от переменного резистора, значение сопротивления которого можно вручную изменять между его минимальным и максимальным значениями, варистор автоматически изменяет значение своего сопротивления при изменении напряжения на нем, что делает его нелинейным резистором, зависящим от напряжения, или сокращенно VDR.

В настоящее время резистивный корпус варистора изготовлен из полупроводникового материала, что делает его типом полупроводникового резистора с неомическими симметричными характеристиками напряжения и тока, подходящими как для переменного, так и для постоянного напряжения.

Во многих отношениях варистор по размеру и конструкции похож на конденсатор, и его часто путают с ним. Однако конденсатор не может подавить скачки напряжения так же, как варистор. Когда к цепи прикладывается скачок высокого напряжения, результат обычно катастрофичен для цепи, поэтому варистор играет важную роль в защите чувствительных электронных схем от пиков переключения и перенапряжений.

Переходные скачки происходят из множества электрических цепей и источников независимо от того, работают ли они от источника переменного или постоянного тока, поскольку они часто генерируются в самой цепи или передаются в цепь от внешних источников. Переходные процессы в цепи могут быстро возрастать, увеличивая напряжение до нескольких тысяч вольт, и именно эти скачки напряжения должны быть предотвращены в чувствительных электронных схемах и компонентах.

Одним из наиболее распространенных источников переходных напряжений является эффект L (di / dt), вызываемый переключением индуктивных катушек и намагничивающими токами трансформатора, приложениями переключения двигателей постоянного тока и скачками напряжения при включении цепей флуоресцентного освещения или других скачков напряжения питания.

Переходные формы волны переменного тока

Варисторы подключены в цепях через сеть питания либо между фазой и нейтралью, либо между фазами для работы от переменного тока, либо с положительного на отрицательный для работы от постоянного тока, и имеют номинальное напряжение, соответствующее их применению. Варистор также можно использовать для стабилизации напряжения постоянного тока и особенно для защиты электронных цепей от импульсов перенапряжения.

Варистор статического сопротивления

При нормальной работе варистор имеет очень высокое сопротивление, отсюда и его название, и работает аналогично стабилитрону, позволяя более низким пороговым напряжениям проходить без изменений.

Однако, когда напряжение на варисторе (любой полярности) превышает номинальное значение варисторов, его эффективное сопротивление сильно уменьшается с ростом напряжения, как показано выше.

Из закона Ома мы знаем, что вольт-амперные характеристики (IV) фиксированного резистора являются прямой линией при условии, что R поддерживается постоянным. Тогда ток прямо пропорционален разности потенциалов на концах резистора.

Но кривые IV варистора не являются прямой линией, так как небольшое изменение напряжения вызывает значительное изменение тока. Типичная нормализованная кривая зависимости напряжения от тока для стандартного варистора приведена ниже.

Кривая характеристик варистора

Из вышесказанного видно, что варистор обладает симметричными двунаправленными характеристиками, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоидальной формы волны, действуя аналогично двум стабилитронам, подключенным вплотную.

 Если не проводящая, кривая IV показывает линейную зависимость, так как ток, протекающий через варистор, остается постоянным и низким только при нескольких микроамперах тока утечки.

 Это связано с его высоким сопротивлением, действующим в качестве разомкнутой цепи, и остается постоянным до тех пор, пока напряжение на варисторе (любой полярности) не достигнет определенного «номинального напряжения».

Это номинальное или зажимное напряжение — это напряжение на варисторе, измеренное с указанным постоянным током 1 мА.

 То есть уровень постоянного напряжения, приложенного к его клеммам, который позволяет току 1 мА течь через резистивный корпус варисторов, который сам зависит от материалов, используемых в его конструкции.

 На этом уровне напряжения варистор начинает переходить из своего изоляционного состояния в проводящее состояние.

Когда переходное напряжение на варисторе равно или превышает номинальное значение, сопротивление устройства внезапно становится очень малым, превращая варистор в проводник из-за лавинного эффекта его полупроводникового материала. Ток небольшой утечки, протекающий через варистор, быстро возрастает, но напряжение на нем ограничено уровнем чуть выше напряжения варистора.

Другими словами, варистор саморегулирует переходное напряжение через него, позволяя большему току течь через него, и из-за его крутой нелинейной кривой IV он может пропускать широко варьирующиеся токи в узком диапазоне напряжений, срезая любые скачки напряжения.

Значения емкостного сопротивления

Поскольку основная проводящая область варистора между двумя его выводами ведет себя как диэлектрик, ниже его напряжения зажима варистор действует как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет значение емкости, которое напрямую зависит от его площади и обратно пропорционально его толщине.

При использовании в цепях постоянного тока емкость варистора остается более или менее постоянной при условии, что приложенное напряжение не увеличивается выше уровня напряжения зажима и резко падает вблизи своего максимального номинального постоянного напряжения постоянного тока.

Однако в цепях переменного тока эта емкость может влиять на сопротивление корпуса устройства в области непроводящей утечки его характеристик IV. Поскольку они обычно соединены параллельно с электрическим устройством для защиты от перенапряжения, сопротивление утечки варисторов быстро падает с увеличением частоты.

Это соотношение приблизительно линейно с частотой, и полученное в результате параллельное сопротивление, его реактивное сопротивление переменного тока Xc может быть рассчитано с использованием обычного 1 / (2πƒC), как для обычного конденсатора. Затем, когда частота увеличивается, увеличивается и ток утечки.

Но наряду с варисторами на основе кремниевых полупроводников были разработаны варисторы на основе оксидов металлов, чтобы преодолеть некоторые ограничения, связанные с их кузенами из карбида кремния.

Металлооксидный варистор

Металл — оксид варистор или MOV для краткости, это резистор, зависящий от напряжения, в котором материал сопротивления представляет собой оксид металла, в первую очередь оксид цинка (ZnO), прессуют в керамики подобного материала. Металлооксидные варисторы состоят из приблизительно 90% оксида цинка в качестве керамического основного материала плюс другие наполнители для образования соединений между зернами оксида цинка.

Металлооксидные варисторы в настоящее время являются наиболее распространенным типом устройства ограничения напряжения и доступны для использования в широком диапазоне напряжений и токов. Использование металлического оксида в их конструкции означает, что MOV чрезвычайно эффективны в поглощении кратковременных переходных напряжений и имеют более высокие возможности обработки энергии.

Как и в случае обычного варистора, металлооксидный варистор запускает проводимость при определенном напряжении и прекращает проводимость, когда напряжение падает ниже порогового напряжения.

 Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV состоит в том, что ток утечки через материал из оксида цинка MOV очень мал, а при нормальных условиях эксплуатации его скорость срабатывания при переходных процессах зажима намного выше.

MOV обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах. Конструкция типичного металлооксидного варистора имеет вид:

Конструкция металлического оксидного варистора

Чтобы выбрать правильное значение MOV для конкретного применения, желательно иметь некоторые знания об импедансе источника и возможной импульсной мощности переходных процессов.

 Для переходных процессов на входящей линии или фазе выбор правильного MOV немного сложнее, так как обычно характеристики источника питания неизвестны.

 В общем, выбор MOV для электрической защиты цепей от переходных процессов и скачков напряжения в сети часто не более чем обоснованное предположение.

Тем не менее, металлооксидные варисторы доступны в широком диапазоне напряжений варистора, от около 10 В до более 1000 В переменного или постоянного тока, поэтому выбор может быть полезен при знании напряжения питания.

Например, при выборе MOV или кремниевого варистора в этом отношении его максимальное номинальное постоянное среднеквадратичное напряжение должно быть чуть выше максимального ожидаемого напряжения питания, скажем, 130 вольт среднеквадратичного значения для источника питания 120 вольт, и 260 вольт среднеквадратичного значения для напряжения 230 вольт.

Максимальное значение импульсного тока, которое будет принимать варистор, зависит от длительности переходного импульса и количества повторений импульсов. Можно предположить ширину переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс).

 Если пиковый импульсный ток недостаточен, варистор может перегреться и повредиться.

 Таким образом, чтобы варистор работал без сбоев или ухудшений, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно вернуться в свое предимпульсное состояние.

Применение варистора на схеме

Варисторы имеют много преимуществ и могут использоваться во многих различных типах устройств для подавления переходных процессов в сети от бытовых приборов и освещения до промышленного оборудования на линиях электропередач переменного или постоянного тока. Варисторы могут быть подключены непосредственно к электросети и к полупроводниковым переключателям для защиты транзисторов, полевых МОП-транзисторов и тиристорных мостов.

Резюме варистора

В этой статье мы увидели, что основная функция резисторазависимого от напряжения, или варистора, заключается в защите электронных устройств и электрических цепей от скачков напряжения, например, вызванных переходными процессами индуктивного переключения.

Поскольку такие варисторы используются в чувствительных электронных схемах, чтобы гарантировать, что, если напряжение внезапно превысит заранее определенное значение, варистор фактически станет коротким замыканием, чтобы защитить цепь, которую он шунтирует от чрезмерного напряжения, поскольку они способны выдерживать пиковые токи в сотни ампер.

Варисторы относятся к типу резисторов с нелинейной неомической характеристикой напряжения тока и являются надежным и экономичным средством защиты от переходных переключений и перенапряжений.

Они достигают этого, выступая в качестве блокирующего устройства с высоким сопротивлением при более низких напряжениях и как хорошее проводящее устройство с низким сопротивлением при более высоких напряжениях. Эффективность варистора в защите электрической или электронной схемы зависит от правильного выбора варистора в отношении рассеяния напряжения, тока и энергии.

Металлооксидные варисторы, или MOV, как правило, изготавливаются из материала металлического оксида цинка в форме небольшого диска. Они доступны во многих значениях для определенных диапазонов напряжения.

 Номинальное напряжение MOV, называемое «напряжение варистора», представляет собой напряжение на варисторе, когда через устройство пропускается ток 1 мА. Этот уровень напряжения варистора, по существу, является точкой на характеристической кривой IV, когда устройство начинает проводить.

 Металлооксидные варисторы также могут быть подключены последовательно для повышения номинального напряжения зажима.

В то время как металлооксидные варисторы широко используются во многих цепях силовой электроники переменного тока для защиты от переходных перенапряжений, существуют также другие типы полупроводниковых устройств подавления напряжения, таких как диоды, стабилитроны и ограничители, которые все могут использоваться при некотором напряжении переменного или постоянного тока.

Варистор

Работа прибора варистор: использование и принципы эксплуатации, маркировка и фото применения

Радиоэлектроника для начинающих

Все, кто сталкивался с радиоэлектронной аппаратурой, наверняка обратили внимание, что название большинства электронных компонентов заканчивается на «стор». Резистор, транзистор, тиристор, стабистор.

Рассмотрим ещё один компонент электронных схем. Он называется варистор и представляет собой резистор, сопротивление которого меняется в зависимости от величины подаваемого напряжения.

Varistor (Variable Resistor) так и переводится – изменяющееся сопротивление. А вот так варистор обозначается на принципиальных схемах.

Английская буква U рядом с наклонной чертой указывает на то, что сопротивление электронного компонента зависит от напряжения. На схемах варистор обычно маркируется двумя буквами RU, а после них ставиться порядковый номер варистора в схеме (1, 2, 3…).

Варистор является полупроводниковым прибором, изготовленным из порошка карбида кремния (SiC) или окиси цинка (ZnO) методом прессования.

У варистора симметричная и нелинейная вольт-амперная характеристика, поэтому он может применяться в цепях постоянного и переменного тока. Варисторы обладают крайне полезным для электрических цепей качеством.

Они способны резко менять своё сопротивление при превышении напряжением определённого порога срабатывания.

В случае возникновения импульса напряжения способного вывести из строя электронное устройство, варистор практически мгновенно изменяет своё сопротивление от сотен МОм до десятков Ом, то есть закорачивает цепь питания, поэтому перед варистором всегда ставится обычный плавкий предохранитель.

Раньше для таких защитных целей ставились газонаполненные разрядники, но их быстродействие и надёжность не идут ни в какое сравнение с параметрами варисторов. Например, дисковый варистор без выводов и впаиваемый непосредственно в печатную плату имеет время срабатывания не превышающее нескольких наносекунд.

Варистор подключается параллельно цепи питания. При отсутствии опасных импульсов напряжения ток, протекающий через него, имеет небольшую величину и варистор не влияет на работу схемы, так как по сути является диэлектриком.

Если возник импульс перенапряжения, варистор из-за нелинейности характеристики уменьшает своё сопротивление практически до нуля. Нагрузка шунтируется, а поглощённая энергия рассеивается в виде тепла. Варистор не обладает инерцией, поэтому после «срезания» импульса он мгновенно снова приобретает очень большое сопротивление.

Если импульс перенапряжения был слишком большой и мощный, то варистор выходит из строя. Порой его корпус трескается, а то и вообще раскалывается на несколько частей.

Бывает, что варистор очень выручает при неполадках в электросети, так как принимает высоковольтный импульс на себя и способствует скорейшему разрыву цепи. При этом основная часть схемы остаётся невредимой. На фото блок питания от проектора, который вышел из строя после скачка напряжения в электросети 220V.

После замены плавкого предохранителя работа проектора была полностью восстановлена. Никакого сложного ремонта, кроме замены предохранителя и самого варистора не потребовалось. Вот так одна небольшая деталь может спасти дорогостоящий прибор.

Параметры варисторов

Основные параметры варисторов:

  • Классификационное напряжение варистора (Varistor Voltage). Это величина напряжения, при котором через варистор протекает ток величиной 1 mA. Этот параметр не является рабочим и скорее является условным. При подборе варистора следует обращать внимание на параметры, о которых речь пойдёт далее;
  • Максимально допустимое переменное напряжение (Maximum Allowable Voltage – ACrms). Для варисторов указывается среднеквадратичное значение переменного напряжения (rms). Это величина переменного напряжения, при котором варистор “срабатывает” и начинает пропускать через себя ток, выполняя свои защитные функции;
  • Максимально допустимое постоянное напряжение (Maximum Allowable Voltage – DC). Тоже, что и максимально допустимое переменное напряжение но для постоянного тока. Как правило, величина этого параметра больше, чем для переменного тока. Указывается также в вольтах (V);
  • Максимальное напряжение ограничения (Maximum Clamping Voltage). Это максимальное напряжение, которое способен выдержать варистор без повреждения. Как правило оговаривается для конкретной величины протекающего через варистор тока. При превышении напряжения ограничения варистор выходит из строя. Корпус варистора при этом растрескивается надвое или вовсе разлетается на куски.
  • Максимальная поглощаемая энергия в джоулях (Дж). Это величина максимальной энергии импульса, которую может рассеять варистор в виде тепла без угрозы разрушения самого варистора;
  • Время срабатывания – время, за которое варистор переходит из высокоомного состояния в низкоомное при превышении максимально допустимого напряжения. Для широко распространённых варисторов это значение составляет несколько десятков наносекунд (нс). Например, 25 нс.
  • Допустимое отклонение (Varistor Voltage Tolerance) – допустимое отклонение квалификационного напряжения варистора. Указывается в процентах – %. Может быть ±5%, ±10%, ±20% и т.д. В маркировке импортных варисторов значение допуска зашифровывается в маркировку варистора буквой. Например, для варисторов фирмы Joyin принято такое обозначение: K – ±10%, L – ±15%, M – ±20%, P – ±25%. Таким образом, для варистора типа JVR-07N391K – отклонение составляет не более ±10%.

При подборе варисторов для электронных схем лучше обращаться к справочному листку (даташиту) на конкретный варистор. Это будет более разумным решением, так как на корпус импортных варисторов наноситься только величина квалификационного напряжения, по которому достаточно сложно судить о параметрах защитного элемента.

Применение варисторов

Для обычной сети 220 вольт устанавливают защитные варисторы с напряжением срабатывания 275 – 420 вольт. Вот пример надёжно защищённого сетевого фильтра.

Этот сетевой фильтр защищают три варистора. То есть надёжно блокируется проникновение импульса не только по фазовой цепи, но и по цепи нуля. Варистор RU1 стоит между фазой и нулевым проводником. Он осуществляет основную защиту.

Два других RU2 и RU3 подключаются между фазой и землёй и между нулём и землёй. Очень часто бывает ситуация когда на целой улице у всех пользователей вышла из строя вся электронная бытовая аппаратура.

О таких случаях были даже телепередачи, когда тысячи человек не могли разобраться на кого писать заявление в суд.

А всё дело в том, что на линии электроснабжения, питающей допустим улицу или микрорайон, вместо фазы и нуля по обоим проводам пошла фаза. Это почти верная смерть для незащищённой бытовой аппаратуры.

То есть между проводами N и PE, если всё нормально, напряжения быть не должно. В случае появления фазы на проводе N варистор RU2 благополучно зашунтирует защищаемый блок.

Это один из примеров использования варисторов в цепях питания бытовой электронной аппаратуры.

Миниатюрные многослойные варисторы уже давно используются в схемах мобильных телефонов и защищают их от статического электричества. Так же варисторы используются для надёжной защиты компьютерных разъёмов и выводов микропроцессоров от той же статики. Варисторы активно применяются в автомобильной электронике и телекоммуникационном оборудовании.

Варисторы можно встретить во входных цепях блоков питания. Вот фото варистора 391KD14 на плате резервируемого блока питания.

А здесь варистор FNR-14K391 установлен в схему охранного прибора “Гранит” для защиты его блока питания от всплесков напряжения в электросети 220V.

Обнаружить варистор можно и на платах электронного балласта для люминесцентных ламп. На фото показан варистор MYG-10K471, установленный в схему электронного пуско-регулирующего аппарата (ЭПРА) для четырёх линейных люминесцентных ламп. На плате он обозначен как RU.

Варисторы для защиты бытовой электроники обычно выпускаются в виде диска с двумя выводами. Чем больше диаметр диска, тем более мощный импульс напряжения способен погасить варистор. Мощность импульса или энергию, которую способен “погасить” варистор обычно измеряют в джоулях (Дж).

Вот, например, несколько варисторов. Значение диаметра варистора в миллиметрах, как правило, вводится в маркировку самого варистора, например, JVR-07N391K (диаметр – 7 мм.).

Диаметр самого большого варистора типа MYG-14K391, изображённого на фотографии – 14 мм. (~70 Дж), чуть поменьше варистор MYG-10K471 – 10 мм. (~45 Дж), а маленького JVR-07N391K – 7 мм. (~30 Дж).

В скобках указана величина энергии поглощения в джоулях (Дж). Как видим, варистор, обладающий самым большим диаметром в 14 мм. способен погасить энергию опасного импульса в 70 джоулей, в то время как самый маленький варистор диаметром 7 мм. способен погасить всего лишь 30 джоулей.

Таким образом, по величине диаметра варистора можно косвенно судить о его максимальной энергии поглощения. Понятно, что в электронные схемы предпочтительнее устанавливать варисторы, рассчитанные на большую энергию поглощения.

Также рекомендуется устанавливать в схему по два одинаковых варистора, включенных параллельно.

Также существуют варисторы и для SMD монтажа. По внешнему виду они напоминают SMD диоды и поэтому их достаточно сложно отличить.

К варисторам отечественного производства относятся изделия марки СН2-1А, СН1-2-1, ВР-4В и др.

Конечно, у варисторов имеются недостатки, но они не столь значительны по сравнению с газоразрядными приборами. Прежде всего, варисторы обладают довольно большими шумами на низкой частоте, а также меняют свои параметры со временем и от воздействия температуры.

Стоит заметить, что среди защитных компонентов кроме варистора существует ещё один электронный компонент – супрессор. Это так называемый защитный диод или трансил. По своим функциям (но не устройству!) он чем-то похож на варистор, но обладает большим быстродействием и, как правило, используется в низковольтных цепях.

Кроме маломощных варисторов, которые применяются для защиты бытовой аппаратуры, промышленность выпускает очень мощные варисторы на большие напряжения и токи. Они используются на трансформаторных подстанциях и всегда включаются в системы грозозащиты.

При установке варисторов в самодельные конструкции следует иметь в виду, что иногда, при возникновении критических условий варисторы могут «взрываться» и чтобы предохранить монтаж и другие радиоэлектронные компоненты от последствий такого «взрыва» их стараются помещать в защитные экраны. Если сравнивать варисторы из карбида кремния и оксида цинка то, по мнению специалистов, вторые предпочтительнее.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Мигалка на светодиодах.
  • Как устроен осциллограф?

Работа прибора варистор: использование и принципы эксплуатации, маркировка и фото применения

Работа прибора варистор: использование и принципы эксплуатации, маркировка и фото применения

Для обеспечения защиты электрических цепей специалисты применяют широкий набор самых разнообразных устройств. Одним из таких приборов является варистор.

Он срабатывает при возникновении серьезных скачков в системе, тем самым регулируя ее работу. Как и любое другое устройство, варистору необходимы регулярные проверки его технического состояния.

Из данной статьи можно узнать о наиболее важной информации, связанной с его функционированием.

Что такое варистор?

Для начала следует остановиться на том, что представляет собой это устройство.

  1. Данный прибор – это полупроводниковый резистор, уровень проводимости которого зависит от такого показателя, как величина приложенного напряжения.
  2. Кроме того, он относится к нелинейным типам приборов.

Принцип работы варистора прост. При наличии в электрической цепи нормального уровня напряжения варистор пропускает через себя малый ток. В случае достижения в системе, в силу обстоятельств, предельных значений напряжения, варистор открывается и пропускает все токовые силы . Таким образом, осуществляется регулировка работы электрической цепи.

Маркировка варисторов

В настоящее время каждый производитель устанавливает свою маркировку на эти типы приборов. Это объясняется тем, что производимые приборы имеют разные технические характеристики. Например, предельно допустимое напряжение или необходимый для функционирования уровень тока.

Наиболее распространенными маркировками является обозначение вида CNR, которая дополняется такими элементами, как 07D390K. Обозначения имеют следующее значение:

  1. CNR – серия варистора. Приборы с данным обозначением являются металлооксидными.
  2. 07 – величина устройства в диаметре (7 миллиметров).
  3. D – дисковый прибор.
  4. 390 – предельно допустимый показатель уровня напряжения.

Основные параметры

Главными параметрами такого прибора являются:

  • Величина напряжения.
  • Предельно допустимый уровень переменного напряжения.
  • Предельно допустимый уровень постоянного напряжения.
  • Максимально возможное поглощение энергии, выраженное в джоулях.
  • Время срабатывания.
  • Допустимые погрешности в работе.

Как проверить варистор?

Для осуществления диагностики приборов предназначены специальные устройства, которые носят название тестеров. Для проведения проверки тестер необходимо включить и перевести в режим сопротивления. В том случае, если техническое состояние тестируемого аппарата отвечает всем необходимым требованиям, то данные на тестере будут отличаться очень большой величиной.

Если вы решили проверить свой прибор, то также следует удостовериться в его должном внешнем виде. Посмотрите внимательно, нет ли на приборе трещин и не подгорел ли он в каких-нибудь местах. Не стоит игнорировать данный совет и принижать роль внешнего вида аппарата – по утверждениям специалистов, тщательный визуальный осмотр прибора помогает избежать возникновения многих неприятных ситуаций.

Достоинства

Этот вид аппаратов обладает целым рядом неоценимых преимуществ по сравнению с разрядниками и многими другими приборами.

К основным преимуществам можно отнести:

  • Высокую скорость работы.
  • Отслеживание резких перепадов уровня напряжения в системе происходит в безинерционном режиме.
  • Предполагают применение при уровне напряжения в цепи от 12 до 1800 В.
  • Долгий срок эксплуатации.
  • Доступная стоимость.

Недостатки

Однако, наряду с большим количеством преимуществ перед другими приборами прибор имеет также и некоторые недостатки. Среди них можно назвать такие моменты, как:

  1. Большой размер собственной емкости, вносимой в электрическую цепь. В зависимости от технических характеристик варистора – его конструкции, вида и максимально допустимого уровня напряжения данный показатель может равняться от 80 до 3000 пФ. Однако следует отметить, что в некоторых случаях большой объем вносимой в систему емкости может и сыграть на руку и превратиться в достаточно весомое достоинство. Например, при использовании тиристора в разнообразных фильтрах. В данной ситуации емкость будет ограничивать уровень напряжения в цепи.
  2. Разрядники обладают более высоким показателем предельно допустимой способности рассеивать мощность, нежели варистор. Некоторые производители для увеличения данного показателя существенно увеличивают размеры выпускаемых варисторов. Что следует помнить при установке варистора? В том случае, если вам необходимо включить варистор в самодельную систему, следует знать о некоторых важных моментах.

Во-первых, всегда нужно помнить, что иногда могут наступать так называемые критические условия – они с большой долей вероятности могут привести к взрыву устройства. Для предотвращения взрыва предназначены специальные устройства – защитные экраны. В них помещается вся конструкция варистора.

Во-вторых, следует не забывать, что кремневые варисторы по своим техническим характеристикам значительно уступают оксидным. Поэтому наиболее оптимальным вариантом является приобретение именно оксидного варистора.

  • Евгений Сергеевич Сидорков
  • Распечатать

Варистор: обозначение и основные характеристики, маркировка и принцип действия, сферы применения и проверка

Работа прибора варистор: использование и принципы эксплуатации, маркировка и фото применения

Среди радиолюбителей большой популярностью пользуются варисторы. Они применяются практически во всех электронных устройствах и позволяют усовершенствовать некоторые приборы.

Для использования в схемах следует понять принцип работы варистора, а также знать его основные характеристики.

Кроме того он, как и любая деталь, обладает своими достоинствами и недостатками, которые нужно учитывать при построении и расчете электрических схем.

Общие сведения

Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.

Рисунок 1 — УГО варистора.

Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.

Виды и принцип работы

Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:

  1. Высоковольтные с рабочим напряжением до 20 кВ.
  2. Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.

Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.

В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает.

В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона.

При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.

Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.

Маркировка и основные параметры

Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.

Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:

  1. CNR — металлооксидный тип.
  2. 14 — диаметр прибора, равный 14 мм.
  3. D — радиокомпонент в форме диска.
  4. 471 — максимальное значение напряжения, на которое он рассчитан.
  5. К — допустимое отклонения классификационного напряжения, равное 10%.

Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.

Их основные характеристики:

  1. Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
  2. Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
  3. Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
  4. Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
  5. Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
  6. Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
  7. Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).

После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания.

Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя.

Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания.

Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов.

Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Достоинства и недостатки

Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:

  1. Высокое время срабатывания.
  2. Отслеживание перепадов при помощи безинерционного метода.
  3. Широкий диапазон напряжений: от 12 В до 1,8 кВ.
  4. Длительный срок службы.
  5. Низкая стоимость.

У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:

  1. Большая емкость.
  2. Не рассеивают мощность при максимальном значении напряжения.

Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.

При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.

Проверка на исправность

Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора.

Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно.

Для ремонтных работ потребуется следующий инструмент:

  1. Отвертка.
  2. Щетка, которая нужна для очистки платы от пыли. Следует производить очистку постоянно, поскольку она является проводником электричества. В результате этого может произойти выход из строя определенного элемента схемы или короткое замыкание.
  3. Паяльник, олово и канифоль.
  4. Мультиметр для диагностики радиокомпонентов.
  5. Увеличительное стекло для просмотра маркировки.

После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.

Схема 2 — Схема электрическая принципиальная сетевого фильтра на 220 вольт и его доработка.

Найти варистор и произвести его визуальный осмотр. Корпус должен быть целым и без трещин.

Если было обнаружено нарушение целостности корпуса, то его необходимо выпаять и произвести замену на такой же или выбрать аналог. Необходимо отметить, что полярность подключения варистора в цепь не имеет значения.

Если механические повреждения не обнаружены, то следует перейти к его диагностике, которая производится двумя способами:
  1. Измерение сопротивления.
  2. Поиск неисправности, исходя из технических характеристик элемента.

В первом случае деталь выпаивается из платы и замеряется значение ее сопротивления при помощи мультиметра. Переключатель ставится в положение максимального диапазона измерений (2 МОм достаточно).

При замере не следует касаться руками варистора, поскольку прибор покажет сопротивление тела. Если мультиметр показывает высокие значения, то радиокомпонент исправен, а при других значениях его следует заменить.

После замены следует собрать корпус и произвести включение сетевого фильтра.

Существует и другой способ выявления неисправного варистора, основанный на анализе характеристик элемента. Его, как правило, используют в том случае, если замер величины сопротивления не дал необходимых результатов. Для этого следует обратиться к техническим характеристикам варистора, согласно которым можно выявить его неисправность.

Следует проверить силу тока, при которой он работает, поскольку ее значение может быть меньше необходимой. В этом случае он не будет работать. Также нужно проверить величину напряжения, на которую он рассчитан. Если по каким-либо причинам эти показатели меньше допустимых, то полупроводниковый резистор не откроется.

Таким образом, варистор получил широкое применение в различных устройствах защиты от перепадов напряжения и блоках питания, а также статического электричества. Современные технологии позволяют получить низкие показатели времени срабатывания, благодаря которому сферы применения этого радиоэлемента расширяются.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.