Устройство лазера

Принцип действия лазера: особенности лазерного излучения

Устройство лазера

Первым принцип действия лазера, физика которого основывалась на законе излучения Планка, теоретически обосновал Эйнштейн в 1917 году. Он описал поглощение, спонтанное и вынужденное электромагнитное излучение с помощью вероятностных коэффициентов (коэффициенты Эйнштейна).

Первопроходцы

Теодор Мейман был первым, кто продемонстрировал принцип действия рубинового лазера, основанный на оптической накачке с помощью лампы-вспышки синтетического рубина, производившего импульсное когерентное излучение с длиной волны 694 нм.

В 1960 г. иранские ученые Джаван и Беннетт создали первый газовый квантовый генератор с использованием смеси газов He и Ne в соотношении 1:10.

В 1962 году Р. Н. Холл продемонстрировал первый диодный лазер из арсенида галлия (GaAs), излучавший на длине волны 850 нм. Позже в том же году Ник Голоняк разработал первый полупроводниковый квантовый генератор видимого света.

Устройство и принцип действия лазеров

Каждая лазерная система состоит из активной среды, помещенной между парой оптически параллельных и высокоотражающих зеркал, одно из которых полупрозрачное, и источника энергии для ее накачки.

В качестве среды усиления может выступать твердое тело, жидкость или газ, которые обладают свойством усиливать амплитуду световой волны, проходящей через него, вынужденным излучением с электрической или оптической накачкой.

Вещество помещается между парой зеркал таким образом, что свет, отражающийся в них, каждый раз проходит через него и, достигнув значительного усиления, проникает сквозь полупрозрачное зеркало.

Двухуровневые среды

Рассмотрим принцип действия лазера с активной средой, атомы которой имеют только два уровня энергии: возбужденный E2 и базовый Е1.

Если атомы с помощью любого механизма накачки (оптического, электрического разряда, пропускания тока или бомбардировки электронами) возбуждаются до состояния E2, то через несколько наносекунд они вернутся в основное положение, излучая фотоны энергии hν = E2 – E1.

Согласно теории Эйнштейна, эмиссия производится двумя различными способами: либо она индуцируется фотоном, либо это происходит спонтанно. В первом случае имеет место вынужденное излучение, а во втором – спонтанное.

При тепловом равновесии вероятность вынужденного излучения значительно ниже, чем спонтанного (1:1033), поэтому большинство обычных источников света некогерентны, а лазерная генерация возможна в условиях, отличных от теплового равновесия.

Даже при очень сильной накачке населенность двухуровневых систем можно лишь сделать равной. Поэтому для достижения инверсной населенности оптическим или иным способом накачки требуются трех- или четырехуровневые системы.

Многоуровневые системы

Каков принцип действия трехуровневого лазера? Облучение интенсивным светом частоты ν02 накачивает большое количество атомов с самого низкого уровня энергии E0 до верхнего Е2.

Безызлучательный переход атомов с E2 до E1 устанавливает инверсию населенности между E1 и E0, что на практике возможно только, когда атомы длительное время находятся в метастабильном состоянии E1, и переход от Е2 до Е1 происходит быстро.

Принцип действия трехуровневого лазера заключается в выполнении этих условий, благодаря чему между E0 и E1 достигается инверсия населенности и происходит усиление фотонов энергией Е1-Е0 индуцированного излучения. Более широкий уровень E2 мог бы увеличить диапазон поглощения длин волн для более эффективной накачки, следствием чего является рост вынужденного излучения.

Трехуровневая система требует очень высокой мощности накачки, так как нижний уровень, задействованный в генерации, является базовым.

В этом случае для того, чтобы произошла инверсия населенности, до состояния E1 должно быть накачано более половины от общего числа атомов. При этом энергия расходуется впустую.

Мощность накачки можно значительно уменьшить, если нижний уровень генерации не будет базовым, что требует, по крайней мере, четырехуровневой системы.

В зависимости от природы активного вещества, лазеры подразделяются на три основные категории, а именно, твердый, жидкий и газовый. С 1958 года, когда впервые наблюдалась генерация в кристалле рубина, ученые и исследователи изучили широкий спектр материалов в каждой категории.

Твердотельный лазер

Принцип действия основан на использовании активной среды, которая образуется путем добавления в изолирующую кристаллическую решетку металла переходной группы (Ti+3, Cr+3, V+2, Со+2, Ni+2, Fe+2, и т. д.), редкоземельных ионов (Ce+3, Pr+3, Nd+3, Pm+3, Sm+2, Eu+2,+3, Tb+3, Dy+3, Ho+3, Er+3, Yb+3, и др.), и актиноидов, подобных U+3.

Энергетические уровни ионов отвечают только за генерацию. Физические свойства базового материала, такие как теплопроводность и тепловое расширение, имеют важное значение для эффективной работы лазера. Расположение атомов решетки вокруг легированного иона изменяет ее энергетические уровни.

Различные длины волн генерации в активной среде достигаются путем легирования различных материалов одним и тем же ионом.

Гольмиевый лазер

Примером твердотельного лазера является квантовый генератор, в котором гольмий заменяет атом базового вещества кристаллической решетки. Ho:YAG является одним из лучших генерационных материалов.

Принцип действия гольмиевого лазера состоит в том, что алюмоиттриевый гранат легируется ионами гольмия, оптически накачивается лампой-вспышкой и излучает на длине волны 2097 нм в ИК-диапазоне, хорошо поглощаемом тканями.

Используется этот лазер для операций на суставах, в лечении зубов, для испарения раковых клеток, почечных и желчных камней.

Полупроводниковый квантовый генератор

Лазеры на квантовых ямах недороги, позволяют массовое производство и легко масштабируются.

Принцип действия полупроводникового лазера основан на использовании диода с p-n-переходом, который производит свет определенной длины волны путем рекомбинации носителя при положительном смещении, подобно светодиодам. LED излучают спонтанно, а лазерные диоды – вынужденно.

Чтобы выполнить условие инверсии заселенности, рабочий ток должен превышать пороговое значение. Активная среда в полупроводниковом диоде имеет вид соединительной области двух двумерных слоев.

Принцип действия лазера данного типа таков, что для поддержания колебаний никакого наружного зеркала не требуется. Отражающая способность, создаваемая благодаря показателю преломления слоев и внутреннему отражению активной среды, для этой цели достаточна. Торцевые поверхности диодов скалываются, что обеспечивает параллельность отражающих поверхностей.

Соединение, образованное полупроводниковыми материалами одного типа, называется гомопереходом, а созданное соединением двух разных – гетеропереходом.

Полупроводники р и n типа с высокой плотностью носителей образуют р-n-переход с очень тонким (≈1 мкм) обедненным слоем.

Газовый лазер

Принцип действия и использование лазера этого типа позволяет создавать устройства практически любой мощности (от милливатта до мегаватта) и длин волн (от УФ до ИК) и позволяет работать в импульсном и непрерывном режимах. Исходя из природы активных сред, различают три типа газовых квантовых генераторов, а именно атомные, ионные, и молекулярные.

Большинство газовых лазеров накачиваются электрическим разрядом. Электроны в разрядной трубке ускоряются электрическим полем между электродами. Они сталкиваются с атомами, ионами или молекулами активной среды и индуцируют переход на более высокие энергетические уровни для достижения состояния населения инверсии и вынужденного излучения.

Молекулярный лазер

Принцип действия лазера основан на том, что, в отличие от изолированных атомов и ионов, в атомных и ионных квантовых генераторах молекулы обладают широкими энергетическими зонами дискретных энергетических уровней. При этом каждый электронный энергетический уровень имеет большое число колебательных уровней, а те, в свою очередь, – несколько вращательных.

Энергия между электронными энергетическими уровнями находится в УФ и видимой областях спектра, в то время как между колебательно-вращательными уровнями – в дальней и ближней ИК областях. Таким образом, большинство молекулярных квантовых генераторов работает в далекой или ближней ИК областях.

Эксимерные лазеры

Эксимеры представляют собой такие молекулы как ArF, KrF, XeCl, которые имеют разделенное основное состояние и стабильны на первом уровне. Принцип действия лазера следующий.

Как правило, в основном состоянии число молекул мало, поэтому прямая накачка из основного состояния не представляется возможной. Молекулы образуются в первом возбужденном электронном состоянии путем соединения обладающих большой энергией галогенидов с инертными газами.

Населенность инверсии легко достигается, так как число молекул на базовом уровне слишком мало, по сравнению с возбужденным. Принцип действия лазера, кратко говоря, состоит в переходе из связанного возбужденного электронного состояния в диссоциативное основное состояние.

Населенность в основном состоянии всегда остается на низком уровне, потому что молекулы в этой точке диссоциируют на атомы.

Устройство и принцип действия лазеров состоит в том, что разрядную трубку наполняют смесью галогенида (F2) и редкоземельного газа (Ar). Электроны в ней диссоциируют и ионизируют молекулы галогенида и создают отрицательно заряженные ионы.

Положительные ионы Ar+ и отрицательные F- реагируют и производят молекулы ArF в первом возбужденном связанном состоянии с последующим их переходом в отталкивающее базовое состояние и генерацией когерентного излучения.

Эксимерный лазер, принцип действия и применение которого мы сейчас рассматриваем, может применяться для накачки активной среды на красителях.

Жидкостный лазер

По сравнению с твердыми веществами, жидкости более однородны, и обладают большей плотностью активных атомов, по сравнению с газами. В дополнение к этому, они не сложны в производстве, позволяют просто отводить тепло и могут быть легко заменены.

Принцип действия лазера состоит в использовании в качестве активной среды органических красителей, таких как DCM (4-дицианометилен-2-метил-6-p- диметиламиностирил-4Н-пиран), родамина, стирила, LDS, кумарина, стильбена, и т. д., растворенных в надлежащем растворителе.

Раствор молекул красителя возбуждается излучением, длина волны которого обладает хорошим коэффициентом поглощения. Принцип действия лазера, кратко говоря, заключается в генерации на большей длине волны, называемой флуоресценцией.

Разница между поглощенной энергией и излучаемыми фотонами используется безызлучательными энергетическими переходами и нагревает систему.

Более широкая полоса флуоресценции жидкостных квантовых генераторов обладает уникальной особенностью – перестройкой длины волны. Принцип действия и использование лазера этого типа как настраиваемого и когерентного источника света, приобретает все большее значение в спектроскопии, голографии, и в биомедицинских приложениях.

Недавно квантовые генераторы на красителях стали использоваться для разделения изотопов. В этом случае лазер избирательно возбуждает один из них, побуждая вступить в химическую реакцию.

Физика для

Устройство лазера

Лазеры давно вошли в нашу жизнь повседневную жизнь. С одной стороны, почти у каждого дома или на работе есть лазерный принтер, к которому все привыкли.

С другой – лезерные мечи все так же будоражат воображение тех, кто первый раз (да и не первый тоже) смотрит Звездные Войны.

В данной статье мы на элементарном уровне разберем, что такое лазер, а также рассмотрим физические основы работы этого хитрого понятия.

Что такое лазер?

Интересный факт: знаете ли Вы, что до появления лазеров были мазеры?

Мазер – квантовый генератор, излучающий когерентные микроволны (волны сантиметрового диапазона)

Мазер – это аббревиатура, от английского microwave amplification by stimulated emission of radiation, что в переводе означает “усиление микроволн с помощью вынужденного излучения”. Мазер был изобретен в 1950-х годах, на несколько лет раньше лазера.

Мазеры и лазеры работают по одному и тому же принципу. Отличие состоит в том, что мазеры усиливают волны разного диапазона. Мазер – это усиление микроволн, а лазер – усиление света, то есть волн видимого диапазона.

Лазерные мечи

Лазер (от ight amplification by stimulated emission of radiation – «усиление света посредством вынужденного излучения») – устройство, которое преобразует энергию накачки в энергию монохроматического, поляризованного и узконаправленного потока излучения.

Среди всех этих умных слов для понимания принципа работы лазера нужно выделить два – «вынужденного излучения». Это именно то, что лежит в основе работы лазера.

Именно явление вынужденного излучения лежит в основе работы лазера. В чем суть?

Вынужденное излучение

Мы знаем, что  атом может находиться в разных энергетических состояниях. В самом простом случае состояний всего два – основное и возбужденное. Электроны вращаются вокруг ядра атома по орбитам, которые соответствуют определенным энергиям.

При определенных условиях электрон может как бы перескакивать с одной орбиты на другую и обратно. Т.е. электроны, вращающиеся вокруг ядра, могут переходить с одного энергетического уровня на другой. Причем если электрон переходит с более высокого энергетического уровня на нижний, выделяется энергия.

Для перехода с нижнего уровня на верхний или наоборот, энергию электрону нужно сообщить.

Излучение атома

А теперь представим, что у нас есть атом в возбужденном состоянии, и на него налетает фотон с энергией, равной разности энергий уровней атома. В таком случае наш атом испустит точно такой же фотон, а электрон с высшего уровня энергии перейдет на более низкий. Это и есть вынужденное излучение. Различают также спонтанное излучение, когда возбужденный атом самопроизвольно испускает фотон.

Как это явление работает в лазерах?

Представим себе самый простой лазер, состоящий из системы накачки, рабочей среды и оптического резонатора. Система накачки необходима, чтобы сообщить рабочей среде энергию, которая будет преобразована в энергию излучения, и создать инверсию населенностей энергетических уровней.

Например, если рабочим телом нашего лазера являются атомы с всего двумя энергетическими состояниями, то для работы лазера необходимо, чтобы возбужденные атомы превышали по количеству невозбужденные. Инверсия населенностей – основа того, чтобы генерация излучения в лазере могла начаться.

Как сделать презентацию в ворде вы можете в обзорной статье наших авторов.

Твердотельный лазер

Рабочим телом лазера могут быть как твердые тела, так и жидкости с газами. Физическая суть работы всех этих приборов остается одной и той же. Кстати, первый в мире лазер был рубиновым, т.е. имел в качестве рабочего тела кристалл рубина.

Когда инверсия населенностей достигнута, возбужденные атомы рабочей среды начинают излучать фотоны (спонтанное излучение). Чтобы процесс не «угас», необходимо обеспечить обратную связь.

В простейшем случае роль оптического резонатора играют два зеркала, одно из которых пропускает часть фотонов (полупрозрачно), а второе – отражает.

Таким образом, определенная часть испущенных фотонов остается в рабочем пространстве, индуцируя излучение все новых и новых атомов, от чего процесс начинает развиваться лавинообразно и лазер светит.

Работа лазера

Надеемся, Вы стали чуточку эрудированнее после прочтения этой статьи. Если у Вас есть более глубинные и фундаментальные вопросы по теме «лазеры», помните – среди наших авторов есть люди, готовые в любой момент ответить на них.

Удачи, и да прибудет с Вами сила!

Как работает лазер, принцип действия, устройство, виды

Устройство лазера

Лазеры (или оптические квантовые генераторы) — это одно из самых замечательных и перспективных достижений науки и техники последних десятилетий, одно из «чудес» XX века.

У оптических квантовых генераторов, несомненно, блестящее будущее, так как область их применения поистине безгранична: с помощью лазеров изучают плазму, ускоряют химические реакции, следят за движением искусственных спутников Земли, производят разнообразные научные исследования и многое, многое другое. Так, например, используя лазерное излучение было определено расстояние до Луны с точностью до 100 метров. Если обычная современная вычислительная машина может в секунду произвести несколько миллионов арифметических действий, то вычислительная машина с использованием луча ОКГ за ту же секунду может произвести несколько сотен или тысяч миллионов операций.

Как работает лазер

Все оптические квантовые генераторы состоят их внешнего источника накачки, активной лазерной среды, оптического резонатора. С помощью источника накачки внешняя энергия направляется к оптическому квантовому генератору.

Активная лазерная среда, находящаяся внутри, в зависимости от конструкции может состоять из кристаллического тела (YAG-лазер), смеси газа (CO₂-лазер) или стекловолокна (волоконный лазер). При подаче энергии через систему накачки в активную лазерную среду выделяется энергия в форме излучения.

Активная лазерная среда находится в так называемом «оптическом резонаторе» между двумя зеркалами, одно из которых полупрозрачное. В резонаторе происходит усиление излучения активной лазерной среды, а в то же время часть излучения способна выходить из оптического резонатора через полупрозрачное зеркало.

Таким образом собранное в пучок электромагнитное излучение оптического (светового) диапазона и представляет собой лазерное излучение.

Виды лазеров

Оптические квантовые генераторы подразделяются на основе множества признаков, но в основном используется следующая классификация:

  • по режиму работы:
    • импульсные;
    • непрерывного действия;
  • по виду активной среды:
    • жидкостные;
    • газовые;
    • твердотельные;
    • лазеры на свободных электронах;
  • по способу возбуждения лазерного вещества (накачки):
    • газоразрядные (в разрядах на полых электродах, в дуговых, тлеющих разрядах);
    • газодинамические (с созданием инверсий населенностей путем расширения горячих газов);
    • диодные или инжекционные (возбуждение при прохождении тока в полупроводнике);
    • химические лазеры (возбуждение на основе химических реакций);
    • с оптической накачкой (с возбуждением при помощи лампы непрерывного горения, лампы-вспышки, светодиода или другого лазера);
    • с ядерной накачкой (возбуждение в результате ядерного взрыва или с помощью излучения из атомного реактора);
    • с электронно-лучевой накачкой (специальные типы полупроводниковых и газовых лазеров).

В настоящее время различают следующие виды лазерных устройств:

  • твердотельные лазеры с твердым рабочим веществом (кристаллы искусственного рубина, неодимовые стекла, фтористый кальций, некоторые редкоземельные элементы и др.), обладающие большой мощностью излучения;
  • газовые лазеры, в которых в качестве активного вещества используются различные инертные газы (гелий, неон, аргон и др.); они менее мощные по сравнению со твердотельными лазерами;
  • полупроводниковые лазеры с использованием арсенида галлия и др., обладающие большим коэффициентом полезного действия и относительно большой удельной мощностью по сравнению с другими лазерами.

Применение лазеров

В настоящее время имеется много типов различных ОКГ, предназначенных для научных исследований, для использования в области техники и промышленности. Созданы оптические квантовые генераторы с различными специальными устройствами (приставками) в виде микроскопов, телевизоров и т. п. для биологических и медицинских целей.

Сочетание с микроскопом («лазерный микроскоп») позволяет облучать не только отдельные клетки, но даже и различные образования, находящиеся в них, как например, ядра и другие. В зависимости от материала, служащего активным веществом, меняется интенсивность излучения и длина волны.

Большинство лазеров, применяемых в настоящее время, работает в красном и инфракрасном диапазоне светового спектра.

Импульсные оптические квантовые генераторы, дающие кратковременные импульсы большой энергии, могут применяться в медицине, в основном, для одно- или многократного воздействия на различные патологические очаги, например, для «обстрела» опухолей и др.

Менее мощные приборы непрерывного действия предназначаются по преимуществу для производства различных оперативных вмешательств.

В первом случае лазерный луч можно образно назвать «световой пулей», поражающей избранную цель, а во втором — «световым ножом» (или «световым скальпелем»).

Нефокусированный лазерный луч обычно имеет ширину в 1-2 см, а с наведенным фокусом — от 1 до 0,01 мм и меньше.

Благодаря этому возникла возможность концентрировать огромную световую энергию на площади в несколько микрон, то есть меньше поперечного сечения человеческого волоса, и достигать при этом очень высоких температур — до многих миллионов градусов! Именно благодаря такой способности концентрировать энергию на минимальной площади облучаемой поверхности лазеры и представляют огромный интерес для медицины. Интенсивность лазерного излучения определяется по величине энергии импульса, приходящейся на квадратный сантиметр, и выражается в джоулях (Дж/см²) или калориях, а для устройств непрерывного действии – в ваттах на см². Энергия каждой вспышки лазера может колебаться от долей джоуля до 1000 джоулей и более. Сфокусированный пучок мощного лазера буквально не знает преград. Достаточно сказать, что луч лазера способен «просверливать», плавить и обращать в пар сталь, вольфрам, алмаз, корунд и все другие известные человечеству материалы. В настоящее время мощность оптических квантовых генераторов достигла колоссальной величины. В течение импульса продолжительностью в несколько наносекунд (10-11 сек) она превосходит 10 миллионов киловатт! За последние годы сконструированы лазерные устройства, яркость излучения которых в миллион раз больше яркости солнца, а импульсная мощность превышает мощность крупных электростанций.

← Лазерная хирургия | ↑ Лазеры | Лазерные технологии в медицине →

Лазер, принцип действия и его устройство

Устройство лазера

Лазер – это генератор когерентного электромагнитного излучения в оптическом диапазоне, основанный на использовании индуцированных переходов.

Лазер

Принцип действия (работы) лазера

Инверсная заселенность. Создание когерентного лазерного излучения

Конструкция лазера

Технические характеристики лазера

Лазер:

XX век подарил человечеству множество изобретений и открытий, и одним из величайших среди них считается лазер. Если несколько десятков лет назад он был воплощением произведений фантастов, то сегодня его использование актуально во многих сферах и отраслях промышленности, медицины, производства.

Свое название изобретение получило от сокращения его англоязычной аббревиатуры LASER (light amplification by stimulated emission of radiation), что в переводе означает «усиление света посредством вынужденного излучения».

Впервые возможность создания лазера как устройства была предсказана еще Альбертом Эйнштейном в 1916 году.

Ученый спрогнозировал, что атомы молекул при достаточном воздействии из вне способны изменять свое энергетическое состояние и переходить с высшего энергетического состояния на низшее.

В результате такого перехода определенная часть энергии переходит в свободное состояние – это и есть вынужденное излучение, являющееся основой работы лазеров.

По своей сути лазер или оптический квантовый генератор – это устройство, где на квантово-механический эффект, коим является вынужденное излучение, воздействует внешнее электромагнитное излучение, в результате чего освободившаяся энергия (тепловая, световая, электрическая, химическая и прочая) образует световой луч. Он (световой луч) тоже представляет собой энергию, и превращается в потоки излучения:

– когерентного, т.е. согласованного (скоррелированного) протекания во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени, и при сложении колебаний получается колебание той же частоты;

– монохроматического, т.е.  обладающего очень малым разбросом частот, в идеале – одной частотой (длиной волны);

– поляризованного, т.е. с направленным колебанием векторов напряженности электрического и магнитного полей;

– и узконаправленного характера.

Потоки света и излучение лазера имеют две формы:

– непрерывную (с неизменной амплитудой и постоянной мощностью);

– импульсную (экстремально высокие – пиковые мощности достигаются постепенно).

Лазер – это генератор когерентного электромагнитного излучения в оптическом диапазоне, основанный на использовании индуцированных переходов. При этом под оптическим диапазоном понимается диапазон длин волн от 10-9 до 10-3 м.

Принцип действия (работы) лазера:

Физической основой работы лазера служит явление вынужденного (индуцированного) излучения.

Если кратко, то суть данного явления состоит в том, что возбуждённый атом (или другая квантовая система) способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения.

При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом, происходит усиление света.

Этим явление вынужденного (индуцированного) излучения отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Теперь объясним данное явление более подробно.

Как известно, строение атома схоже со строением Солнечной системы: в центре расположена большая звезда (в данном случае – ядро с положительным зарядом), а вокруг нее по соответствующим орбитам вращаются планеты (отрицательно заряженные электроны). Если электроны находятся в спокойном состоянии, их расположение соответствует низкому энергетическому уровню E0 (т.н.

основное состояние), где затраты энергии минимальны и им достаточно просто поглощать попадающее на них излучение. Как только атом подвергается воздействию постороннего излучения, возникает дополнительная энергия, возбуждающая электроны и заставляющая переходить их на более высокий энергетический уровень или уровни (E1, E2 … En).

Поглощение энергии происходит не хаотично, а строго определенными дозами – квантами, при этом атом старается избавиться от ее излишков и начинает отдавать энергию, чтобы вновь вернуться в состояние покоя, на низкий энергетический уровень. Отдача, как и поглощение, тоже проводится порциями.

Эти порции – кванты или фотоны света – обладают собственной энергией – разницей между энергиями выделения и поглощения. Так возникает как спонтанное, так и вынужденное (индуцированное) излучение.

Следует иметь в виду, что атом в возбужденном состоянии неустойчив. Рано или поздно (в среднем за 10–8 секунды), в какой-то момент времени он самостоятельно вернется в основное состояние, излучив электромагнитную волну – фотон.

Излучение энергии атомом возможно:

– самостоятельно, если он возбужден;

– под воздействием излучения извне.

При этом потоки света, образующиеся в обоих случаях, схожи между собой, а значит, длина волны, вызвавшая возбуждение атома, равна самой вызванной (индуцированной) волне. И чем больше будет воздействие на атом, тем больше электронов перейдут на высший энергетический уровень и тем выше окажется индуцированное излучение.

Существуют сосредоточения атомов, чье большое количество электронов находится на высоком энергетическом уровне. Оно (сосредоточение атомов) представляет собой инверсную систему.

Ее уникальностью является тот факт, что излучение в данной системе гораздо сильнее поглощения, и именно эта особенность предоставила ученым возможность создать лазер посредством искусственного образования подобных систем.

Вне инверсной системы случайные кванты также способны как провоцировать излучение атомов находящихся в возбужденном состоянии, так и поглощаться ими, если те «спокойны».

Однако для получения нужного индуцированного и когерентного потока света необходимо, чтобы число возбужденных частиц имело превосходящее количество (существовала инверсионная заселенность), что в состоянии, когда все макроскопические величины постоянны (т.е. когда все атомы находятся в состоянии покоя), исключено. Получить нужное возбужденное состояние атомов и соответственно создать вынужденное (индуцированное) когерентное излучение позволяют системы накачки активной среды лазера.

Накачка воздействует на активную среду лазера, коими могут выступать различные вещества, дающие ему итоговое название:

– твердые – некоторые драгоценные камни (рубин, гранат), стекла, включающие неодим;

– жидкие – растворы солей неодимов, анилиновых красителей;

– газообразные – гелий и неон, углекислый газ, аргон, а также водяной пар низкого давления;

– плазма;

– полупроводниковые материалы.

Активная среда при этом помещается между параллельными друг другу зеркальными стеклами резонатора.

Инверсная заселенность. Создание когерентного излучения:

Перемещаясь по уровням атома, электроны создают (выделяют) его энергию: чем они выше, тем она больше, а опускаясь – поглощают ее. Чем выше энергия атома, тем больше он возбужден, но это отражается и на его устойчивости – она слабеет.

В определенный момент времени электроны все же изменят уровень на более низкий, выделив фотон – электромагнитное излучение.

Учитывая, что такой переход спонтанный, выделяемое излучение происходит разобщенно, поэтому и образующийся луч является несогласованным.

Если же излучение (выделение энергии) проводится направленно, при воздействии электромагнитной волны, чья частота близка к частоте перехода атома, возникнет иной эффект. Полученный резонанс дестабилизирует атом и все электроны «упадут» с верхних «ярусов» на нижние. При таком спровоцированном воздействии световая волна будет идентична первичной волне по всем трем параметрам:

– частоте;

– направленности;

– фазе.

Все образующиеся волны имеют согласованное (когерентное) направление, и суммарно они увеличивают интенсивность излучения, т.е. количество его квантов.

Заселенность – это количество атомов на определенном энергетическом уровне (En). Если заселенность более высокого уровня (Е2) выше, чем ниже расположенного (Е1), образуется инверсная заселенность. Так и активное вещество – это среда, где возбужденных атомов больше, чем тех, что находятся в состоянии покоя.

Если подобная среда будет подвержена воздействию электромагнитной волны, электроны поднимутся на выше расположенные уровни, и возникнет усиленное этим воздействием излучение. Причина проста – каждый квант электромагнитной волны порождает идентичный фотон, эти два образуют четыре фотона, те – восемь и так далее.

Все это приводит к появлению фотонной лавины.

Однако данная ситуация весьма условна и возможна лишь в идеальных условиях. В реальных же существуют факторы, провоцирующие утрату электромагнитной волной энергии: ее поглощают примеси, которые содержит активная среда, она рассеивается в ее неоднородных слоях и т.д.

Усилить же ее можно путем продления длины пробега в активной среде, что возможно весьма условно.

Поэтому был создан резонатор: многократно отражаясь от двух параллельно расположенных зеркал, волна проходит достаточное расстояние для получения нужного уровня усиления, но при условии, что сохранится инверсионная заселенность.

Обеспечивать нужное число электронов на высоких уровнях возможно при использовании отдельного источника энергии – что означает, что необходимо проводить накачку активной среды источниками энергии. Подобные источники энергии могут быть самыми разными: протекающая химическая реакция, установленная электрическая лампа, направленный разряд электроэнергии и прочие. Есть и определенные условия:

– накопление электронов на верхних слоях атомах. Их должно скопиться не менее половины от общего числа;

– уровень энергии. Он должен превысить определенные показатели, иначе потери превысят накачку, что приведет к малой мощности на выходе.

После достижения состояния инверсии, некоторые электроны начнут спонтанный спуск на более низкий энергетический уровень, при котором возникнут кванты (фотоны).

Те фотоны, которые были выпущены под углом к оси резонатора, вызовут короткий цикл излучений в выбранном направлении и исчезнут из активной среды.

Те фотоны, чье движение будет направлено вдоль оси резонатора, смогут бесконечное количество раз отразиться в зеркалах резонатора, что и приведет к появлению согласованного (когерентного) излучения.

Независимо от названия, все лазеры имеют три основных составляющих:

1. активная среда – рабочее вещество, чей состав позволяет создать инверсионную заселенность;

2. система накачки – это источник энергии, непосредственно увеличивающий число электронов на верхних уровнях атома. Исходя из типа активной среды это:

– газоразрядные лампы-вспышки и устройства с фокусированным солнечным излучением – для лазеров с твердыми веществами и полупроводниковыми материалами;

– электрический разряд – для жидких сред и газов;

– химические реакции – химические генераторы;

– сильный прямой ток сквозь электронно-дырочный переход или пучок электронов – для полупроводниковых лазеров;

3. оптический резонатор – устройство, представляющее собой два параллельно расположенных зеркала, одно из которых непрозрачно, а другое – полупрозрачно. В случае если лазер функционирует в режиме усилителя, данная составляющая все же может отсутствовать.

Рис. 1. Конструкция лазера

@ https://ru.wikipedia.org/wiki/Лазер

На Рис. 1 приведена конструкция (схема) лазера. На схеме обозначены: 1 — активная среда; 2 — система накачки лазера; 3 — непрозрачное зеркало; 4 — полупрозрачное зеркало; 5 — лазерный луч.

Параметрами, характеризующими работу оптического квантового генератора – лазера являются:

– длина излучаемой волны (ДВ) в микрометрах (мкм);

– режим работы (РР);

– мощность излучения (МИ) в мегаваттах (мВт);

– частота повторения импульсов (ЧПИ) в герцах (Гц);

– длительность импульса (ДИ) в миллисекундах (мс), микросекундах (мкс), наносекундах (нс), пикосекундах (пс), фемтосекундах (фс);

– расходимость излучения (РИ) в миллирадианах (мрад);

– коэффициент полезного действия (КПД) в процентах (%).

Сравнительную характеристику основных лазеров можно оценить по данным таблицы.

Тип лазераАктивная средаДВ, мкмРРМИ, мВтЧПИ, ГцДИ, мксРИ, мрадКПД, %
ГазовыйГелий-Неон0,63непрерывный0,5-500,7-3,50,01-0,1
Двуокись углерода – Азот10,6непрерывный1 – 1,5·104до 25до 20
10,6импульсный10 – 5·103до 2,5·1040,006-1до 7до 6
Аргон0,33-0,53непрерывный0,01-200,5-1,50,01-0,1
Фторид криптона0,249импульсный20-250до 1034·10-3 – 10,1-60,03-2
ЖидкостныйОрганические красители0,25-1,01импульсный0,1-3108

Лазерный диод – принцип работы, ток лазерного диода

Устройство лазера

Под термином “лазерный диод” понимается лазер полупроводникового типа, основа конструкции которого представлена диодом. Принцип работы такого лазера строится на том, что после того, как в диод были инжектированы носители заряда в зоне p-n – перехода возникает инверсия населённостей.

Принцип работы лазерного диода

Всегда необходимо помнить, что при формировании излучения больше важен не ток лазерного диода, а напряжение. В момент подачи на анодный конец диода положительного потенциала, наблюдается смещение диода по прямому направлению.

Это подразумевает инжекцию дырок из p-области в n-область и аналогичную инжекцию электронов в обратном направлении. Расположение электрона и дырки в достаточной близости для проявления эффекта туннелирования делает возможной их рекомбинацию.

Данное действие сопровождается образованием:

  • Фотонов, имеющих определённую длину волны (результат принципа сохранения энергии);
  • Фононов (компенсируют забираемые фотонами импульсы).

Явление носит название спонтанного излучения и применительно к светодиодам считается главным методом создания излучения.

Рис 1  Конструкция лазерного диода.

Если рекомбинирование электрона и дырки, несмотря на общую пространственную область, не происходит весьма долго. Пересечение этой области фотоном с резонансной частотой провоцирует процесс вынужденной рекомбинации, результатом которой становится формирование другого фотона, полностью совпадающего с первым по всем значимым параметрам.

Особенности конструкции

Кристалл полупроводника лазерного диода представляет собой весьма тонкую прямоугольную пластинку. Деление на p и n области здесь происходит по принципу не лево-право, а верх-низ. То есть, вверху расположена p-область, а внизу – n-область.

Как результат: площадь p-n – перехода достаточно велика. Для торцевых (боковых) сторон обязательна полировка, поскольку формирование оптического резонатора (Фабри-Перо) требуются наличие параллельных плоскостей абсолютной гладкости.

Перпендикулярно направленный в отношении одной из таких плоскостей случайный фотон (сформированный спонтанным излучением) будет двигаться по всему оптическому волноводу, периодически отражаясь от боковых граней, пока наконец не покинет резонатор.

Во время движения этот фотон станет причиной нескольких актов вынужденной рекомбинации, формирования подобных фотонов и усиления излучения. В момент, когда усиление достаточно для перекрытия потерь, происходит лазерная генерация.

Разновидности лазерных диодов

  • P-n гомоструктурный диод.

В большинстве случаев слой лазерного диода весьма тонок и генерация фотонового потока происходит параллельно структуре этого слоя.

Однако, при конструкции достаточной ширины, диод может функционировать в поперечном варианте.

Это многомодовые диоды, и их использование демонстрирует высокую мощность излучения в комбинации с высокой его расходимостью.

С целью обеспечения лучшей фокусировки по ширине волновод должен сопоставляться с длиной волны излучения.

Ввиду малой толщины излучающего элемента и дифракции наблюдается сильное расхождение луча в момент выхода. Компенсировать данный эффект можно при помощи собирающих линз.

В случае с многомодовыми лазерами обычно используют линзы цилиндрического типа.

А если для стандартного лазера применить симметричные линзы, то луч в сечении приобретёт форму эллипса поскольку в вертикальном направлении луч расходится сильнее, чем в горизонтальном.

Лазерный диоды данного типа не отличаются эффективностью. Для их работы применяется большая входная мощность и импульсное воздействие (позволяющее избежать перегрева). В производстве они практически не используются.

  • Лазерный диод с двойной гетероструктурой (ДГС).

Особенностью диодов данного типа является то, что в них кристаллический слой, имеющий более узкую запрещённую зону, фиксируется между двух кристаллических слоёв, имеющих более широкую запрещённую зону.

Большим плюсом моделей данного типа является увеличение активной области (распространяющуюся практически на весь средний слой) и усиление потока фотонов (благодаря дополнительному отражению света от гетеропереходов).

  • Лазерный диод с квантовыми ямами.

При более сильном истончении среднего слоя в диодах ДГС-типа, его свойства изменяются таким образом, что он превращается в квантовую яму. Таким образом по вертикали электронная энергия будет подвергаться квантованию.

Рис 2 Лазерный диод – вид разрезе

Разность энергетических уровней квантовых ям может быть использована излучения взамен возможного барьера. Это позволяет регулировать длину волны при излучении, определяемую толщиной среднего слоя. Более эффективный вариант ввиду равномерности распределения электронов и дырок.

  • Лазерный диод с гетероструктурой и раздельным удержанием

Гетероструктурные лазеры с тонким слоем имеют один весомый недостаток – они не в состоянии эффективно удерживать свет. Для разрешения проблемы к двум сторонам кристалла крепится по дополнительному слою. По коэффициенту преломления эти слои уступают центральным. Общая конструкция при этом становится подобна световоду. Наибольший процент лазерных диодов сформирован по данной технологии.

  • Лазерные диоды с распределением обратной связи (РОС).

Лазеры РОС-типа применяются для многочастотных волоконно-оптических связей.

При помощи поперечной насечки в области p-n – перехода, необходимой для формирования дифракционной решётки, становится возможной стабилизация длины волны.

Конкретное её значение зависит от параметров насечки, однако возможны некоторые деформации под действием температурных всплесков. Лазеры данного типа применяются преимущественно для телекоммуникаций и оптики.

Лазер поверхностного излучения, снабжённый вертикальным резонатором. Это означает, что свет будет направлен перпендикулярно относительно грани кристалла, в то время как лазеры других типов излучают свет параллельно кристаллу.

Аналогичен по свойствам предыдущему варианту, но оснащён внешним резонатором.

Драйвер для лазерного диода

Выходная оптическая мощность лазерного диода (являющая одной из основных оптических характеристик) находится в зависимости от тока, проходящего по p-n – переходу. Ввиду этого драйвер лазерного диода обязательно должен соотноситься с источником тока. Все характеристики относящиеся к источнику тока отражаются на параметрах оптической мощности.

В сферу “обязанностей” драйвера входит не только регулировка мощности, но и терморегуляция, осуществляемая через охладитель. Конструкция управляющего блока при этом может быть как совмещённой, так и раздельной.

Рис з Схема простейшего  драйвера лазерного диода

Как подключить лазерный диод

Питать лазерный диод можно при помощи:

  • Батарей;
  • Аккумуляторных источников питания;
  • Стационарных сетей на 220 В (при соответствующей защите от перепадов тока и напряжения).

Подключение лазерного диода к сети на 220 вольт опасно выбросами напряжения и высокочастотными всплесками. Чтобы обеспечить в защиту при данном варианте, потребуется конструкция, включающая в себя:

  • Стабилизатор напряжения;
  • Конденсатор;
  • Токоограничивающие резисторы;
  • Лазерный диод.

При использовании всех приведённых компонентов можно гарантировать безопасность эксплуатации диода.

Рис 4 Одно из подключений лазерного диода

Излучение с какой длиной волны может производить лазерный диод?

Единица измерения длины волны, которую может продуцировать лазерный диод – нм, иначе “нанометры”. Благодаря этому значению можно определить цветовой спектр испускаемого светового луча:

Поток фотонов красного цвета наиболее часто используется в конструкциях дисководов. При дневном свете луч этого лазера виден не очень хорошо, но причина этому только невосприимчивость человеческого зрения.

При мощности от 20-50 мВт и фокусировки светового пятна в минимально возможную по площади точку проявляется эффект “жжения”.

Мощность на 200 мВт при правильной фокусировке позволяет резать бумагу различной плотности.

Зелёный поток. Лазеры данного типа очень хрупки и чувствительны к температурным всплескам, требуют крайне осторожного обращения. К тому же обладают сложным устройством и до недавнего времени были крайне дорогими.

Главный положительный момент их применения: зрительно излучение на 532 нм наиболее хорошо различимо. Поэтому использовать лазер зелёного цвета мощнее, чем на 5мВт будет небезопасно для зрения.

Кроме того, в силу особенностей конструкции вместе с зелёным спектром лазер поставляет и инфракрасный с длиной волны на 808 нм и 1064 нм, а это только повышает травмоопасность такого прибора.

Правда в более дорогих экземплярах стоят специальные фильтры, но это обязательно нужно проверять.

Фиолетовое излучение. Опасно тем, что слабо различимо для человеческого глаза и кажется слабым по мощности, хотя на деле ситуация строго противоположная. Его трудно сфокусировать. В общем, в целях эксплуатации не самый удобный вариант. Может быть актуален разве что при работе с фоторезисторами.

Инфракрасное излучение. Опасно в силу того, что не воспринимается человеческим зрением от слова совсем. А это грозит различными травмами зрения. Работа возможна только при отсутствии инфракрасного фильтра, что обеспечит хотя бы относительную видимость луча.

Излучение также инфракрасное с надбавкой CO2. Наиболее широко применяется в промышленности. Подобные лазеры имеют низкую стоимость, высокую мощность и отличаются высоким КПД. Используются данные лазерные диоды для резки металла или фанеры. С их помощью выполняется гравировка.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик, буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось – это поможет развитию канала
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.