Железо: химические свойства и температура плавления

Температура плавления и основные свойства железа, классификация металлов

Железо: химические свойства и температура плавления

Металлы плавятся, как правило, при очень высокой температуре, которая может достигать более 3 тыс. градусов. Хотя некоторые из них можно расплавить в домашних условиях, например, свинец или олово. А вот ртуть плавят при температуре минус 39 градусов.

В домашних условиях этого добиться не удастся. Температура плавления — это один из важных показателей производства не только самого металла, но и его сплавов. Выплавляя сырье, специалисты учитывают и другие физические и химические свойства руды и металла.

Железо — это химический элемент, который в таблице Менделеева находится под номером 26. Это один из самых распространенных элементов во всей Солнечной системе. Согласно материалам исследований, в составе ядра Земли находится примерно 79−85% этого вещества. В земной коре его тоже присутствует большое количество, но оно уступает алюминию.

В чистом виде металл имеет белый цвет с чуть серебристым оттенком. Он пластичен, но имеющиеся в нем примеси могут определять его физические свойства. Реагирует на магнит.

Железо присутствует в воде. В речных водах его концентрация равна примерно 2 мг/л металла. В морской воде его содержание может быть ниже в сто или даже тысячу раз.

Оксид железа — это основная форма, добыча которой осуществляется и которая находится в природе. Оксидное железо может располагаться в самой верхней части земной коры и быть составляющей осадочных образований.

Элемент, находящийся на двадцать шестом месте в таблице Менделеева, может иметь несколько степеней окисления. Именно они определяют его геохимическую особенность нахождения в определенной среде. В ядре Земли металл присутствует в нейтральной форме.

Добыча полезных ископаемых

Руд, в которых присутствует железо, существует несколько. Однако, в качестве сырья для производства железа в промышленности используют в основном следующие:

  • магнезитовую руду;
  • гетитовую руду;
  • гематитовую руду.

А также часто встречаются такие разновидности руды:

  • леллингит;
  • сидерит;
  • марказит;
  • ильменит;
  • ярозит.

Существует еще минерал под названием мелантерит. Его используют преимущественно в фармацевтической промышленности. Из себя он представляет зелёного цвета хрупкие кристаллы, в которых присутствует стеклянный блеск. Из него производят лекарственные препараты, в составе которых имеется ферум.

Основным месторождением этого металла является Южная Америка, а именно Бразилия.

Точкой плавления металла называют такую минимальную температуру, при которой он переходит из твердого состояния в жидкое. При этом в объеме он практически остается неизменным.

Металл могут производить из руды различными способами, но самый основной из них — это доменный. Помимо доменного, используют еще выплавку железа при помощи обжига измельченной руды с примесью глины. Из полученной смеси формируют окатыши, которые обрабатываются в печи с последующим восстановлением водородом. Далее плавление железа осуществляется в электрической печи.

Температура плавления железа весьма высока. Для технически чистого элемента она составляет +1539 °C. В этом веществе присутствует примесь — Сера, которую можно извлечь лишь в жидком виде. Без примесей чистый материал получают при электролизе солей металла.

Классификация металлов по температуре плавления

Разные металлы могут переходить в жидкое состояние при разной температуре. Вследствие этого выделяют определённую классификацию. Их делят следующим образом:

  1. Легкоплавкие — те элементы, которые могут становиться жидкими уже при температуре ниже 600 градусов. К ним относят цинк, олово, свинец и пр. Их можно расплавить даже в домашних условиях — просто нужно разогреть при помощи плиты или паяльника. Такие виды нашли применение в технике и электронике. Они используются для соединения элементов из металла и движения электрического тока. Олово плавится при 232 градусах, а цинк — при 419 градусах.
  2. Среднеплавкие — элементы, которые начинают расплавляться при температуре от шестисот до тысячи шестисот градусов. Эти элементы используют по большей части для строительных элементов и металлоконструкций, то есть при создании арматур, плит и строительных блоков. В эту группу входят: железо, медь, алюминий. Температура плавления алюминия сравнительно низка и составляет 660 градусов. А вот железо начинает переходить в жидкое состояние лишь при температуре 1539 градусов. Это один из самых распространенных металлов, используемых в промышленности, особенно в автомобильной. Однако железо подвержено коррозии, то есть ржавчине, поэтому ему требуется специальная поверхностная обработка. Его необходимо покрывать краской или олифой, и не допускать попадание влаги.
  3. Тугоплавкие — это такие материалы, которые расплавляются и становятся жидкими при температуре выше 1600 градусов. В эту группу относят вольфрам, титан, платину, хром и т. п. Они используются в ядерной промышленности и для некоторых машинных деталей. Они могут применяться для расплавки других металлов, изготовления высоковольтных проводов или проволоки. Платину можно расплавить при 1769 градусах, а вольфрам — при 3420 °C.

Единственный элемент, который при обычных условиях находится в жидком состоянии — это ртуть. Температура его плавления составляет минус 39 градусов и его пары являются ядовитыми, поэтому его используют только в лабораториях и закрытых ёмкостях.

Таблица температур плавления металлов

Железо: химические свойства и температура плавления

instrument.guru > Металлообработка > Таблица температур плавления металлов

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким.

Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии.

При продолжении воздействия начинает плавиться.

  • Как происходит процесс
  • В зависимости от градуса, при котором плавятся металлы, они разделяются на:
  • Таблица характеристик
  • Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

Наиболее низкая температура плавления у ртути — она плавится даже при -39 °C, самая высокая у вольфрама — 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой — плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании.

Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты.

Воздействие при этом примерно одинаковое.

Когда происходит нагревание, усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки, сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие — до 600 °C: свинец, цинк, олово;
  2. среднеплавкие — от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие — от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина — градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы — непременная основа для ковки, литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота, ограды из чугуна, ножи из стали или браслеты из меди), для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий — 660 °C;
  2. температура плавления меди — 1083 °C;
  3. температура плавления золота — 1063 °C;
  4. серебро — 960 °C;
  5. олово — 232 °C.

    Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;

  6. свинец — 327 °C;
  7. температура плавления железо — 1539 °C;
  8. температура плавления стали (сплав железа и углерода) — от 1300 °C до 1500 °C.

    Она колеблется в зависимости от насыщенности стали компонентами;

  9. температура плавления чугуна (также сплав железа и углерода) — от 1100 °C до 1300 °C;
  10. ртуть — -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл — ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия— 2519 °C, у железа — 2900 °C, у меди — 2580 °C, у ртути — 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов — у рения— 5596 °C. Наибольшая температура кипения — у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов. Самым лёгким металлом является литий, самым тяжёлым — осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре.

К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа — очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах — это теплопроводность металлов. Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл — серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

При какой температуре плавится железо

Железо: химические свойства и температура плавления

Металлы плавятся, как правило, при очень высокой температуре, которая может достигать более 3 тыс. градусов. Хотя некоторые из них можно расплавить в домашних условиях, например, свинец или олово. А вот ртуть плавят при температуре минус 39 градусов.

В домашних условиях этого добиться не удастся. Температура плавления — это один из важных показателей производства не только самого металла, но и его сплавов. Выплавляя сырье, специалисты учитывают и другие физические и химические свойства руды и металла.

Железо — это химический элемент, который в таблице Менделеева находится под номером 26. Это один из самых распространенных элементов во всей Солнечной системе. Согласно материалам исследований, в составе ядра Земли находится примерно 79−85% этого вещества. В земной коре его тоже присутствует большое количество, но оно уступает алюминию.

В чистом виде металл имеет белый цвет с чуть серебристым оттенком. Он пластичен, но имеющиеся в нем примеси могут определять его физические свойства. Реагирует на магнит.

Железо присутствует в воде. В речных водах его концентрация равна примерно 2 мг/л металла. В морской воде его содержание может быть ниже в сто или даже тысячу раз.

Оксид железа — это основная форма, добыча которой осуществляется и которая находится в природе. Оксидное железо может располагаться в самой верхней части земной коры и быть составляющей осадочных образований.

Элемент, находящийся на двадцать шестом месте в таблице Менделеева, может иметь несколько степеней окисления. Именно они определяют его геохимическую особенность нахождения в определенной среде. В ядре Земли металл присутствует в нейтральной форме.

Плавление железа и необходимая температура

Точкой плавления металла называют такую минимальную температуру, при которой он переходит из твердого состояния в жидкое. При этом в объеме он практически остается неизменным.

Металл могут производить из руды различными способами, но самый основной из них — это доменный. Помимо доменного, используют еще выплавку железа при помощи обжига измельченной руды с примесью глины. Из полученной смеси формируют окатыши, которые обрабатываются в печи с последующим восстановлением водородом. Далее плавление железа осуществляется в электрической печи.

Температура плавления железа весьма высока. Для технически чистого элемента она составляет +1539 °C. В этом веществе присутствует примесь — Сера, которую можно извлечь лишь в жидком виде. Без примесей чистый материал получают при электролизе солей металла.

Железо

Железо: химические свойства и температура плавления

 

Чистое железо (99,97%), очищенное методом электролиза

Железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе.

В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Обозначается символом Fe (лат. Ferrum).

Один из самых распространённых в земной коре металлов (второе место после алюминия).

СТРУКТУРА

Две модификации кристаллической решетки железа

Для железа установлено несколько полиморфных модификаций, из которых высокотемпературная модификация — γ-Fe(выше 906°) образует решетку гранецентрированного куба типа Сu (а0 = 3,63), а низкотемпературная — α-Fe-решетку центрированного куба типа α-Fe (a0 = 2,86).
В зависимости от температуры нагрева железо может находиться в трех модификациях, характеризующихся различным строением кристаллической решетки:

  1. В интервале температур от самых низких до 910°С —а-феррит (альфа-феррит), имеющий строение кристаллической решетки в виде центрированного куба;
  2. В интервале температур от 910 до 1390°С — аустенит, кристаллическая решетка которого имеет строение гранецентрированного куба;
  3. В интервале температур от 1390 до 1535°С (температура плавления) — д-феррит (дельта-феррит). Кристаллическая решетка д-феррита такая же, как и а-феррита. Различие между ними только в иных (для д-феррита больших) расстояниях между атомами.

При охлаждении жидкого железа первичные кристаллы (центры кристаллизации) возникают одновременно во многих точках охлаждаемого объема. При последующем охлаждении вокруг каждого центра надстраиваются новые кристаллические ячейки, пока не будет исчерпан весь запас жидкого металла.

В результате получается зернистое строение металла. Каждое зерно имеет кристаллическую решетку с определенным направлением его осей.

При последующем охлаждении твердого железа при переходах д-феррита в аустенит и аустенита в а-феррит могут возникать новые центры кристаллизации с соответствующим изменением величины зерна

СВОЙСТВА

Железная руда

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью.

Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.
Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже.

Физические свойства железа — это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая — 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа — хорошая пластичность и легкоплавкость. Но и это еще далеко не все. Также в физические свойства железа входит и его ферромагнитность.

Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля.

А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

Запасы и добыча

Железо — один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. железа в земной коре составляет 5 %, а в мантии около 12 %.

Железо

В земной коре железо распространено достаточно широко — на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало — в кислых и средних породах.

Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe2O4, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O).

Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды.

В них часто встречается вивианит Fe3(PO4)2·8H2O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
железа в морской воде — 1·10−5-1·10−8 %
В промышленности железо получают из железной руды, в основном из гематита (Fe2O3) и магнетита (FeO·Fe2O3).Существуют различные способы извлечения железа из руд.

Наиболее распространённым является доменный процесс.Первый этап производства — восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород.

Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями, как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах. Химически чистое железо получается электролизом растворов его солей.

ПРОИСХОЖДЕНИЕ

Самородное железо

Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия).

В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n.

В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд.

Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

ПРИМЕНЕНИЕ

Кольцо из железа

Железо — один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.Железо является основным компонентом сталей и чугунов — важнейших конструкционных материалов.Железо может входить в состав сплавов на основе других металлов — например, никелевых.

Магнитная окись железа (магнетит) — важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.Ультрадисперсный порошок магнетита используется во многих чёрно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера.

Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.

Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.

Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.

Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Железо (англ. Iron) — Fe

Железо — общая характеристика элемента, химические свойства железа и его соединений

Железо: химические свойства и температура плавления

Желе́зо — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1)     На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O2 + 6H2 O → 4Fe(OH)3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O2 → Fe3O4

3Fe+2O2→(Fe IIFe2 III)O4   (160 °С)

2)     При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H2O  –t°→  Fe3O4 + 4H2­

3)     Железо реагирует с неметаллами при нагревании:

2Fe+3Cl2→2FeCl3   (200 °С)

2Fe + 3Br2  –t°→  2FeBr3

Fe + S  –t°→  FeS (600 °С)

Fe+2S → Fe+2(S2-1)   (700°С)

4)       В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н2SO4, при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl2 + H2­ (реакции проводятся без доступа воздуха, иначе Fe+2 постепенно переводится кислородом в Fe+3 )

Fe + H2SO4(разб.) → FeSO4 + H2­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе3+:

2Fe + 6H2SO4(конц.)  –t°→  Fe2(SO4)3 + 3SO2­ + 6H2O

Fe + 6HNO3(конц.)  –t°→  Fe(NO3)3 + 3NO2­ + 3H2O

(на холоде концентрированные азотная и серная кислоты пассивируют железо).

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5)     Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

Fe + CuSO4 → FeSO4 + Cu

6)

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н2O= Nа2[Fе(ОН)4]↓+ Н2↑

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо — сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд — перевод в оксидную руду:

FeS2→Fe2O3   (O2,800°С, -SO2)       FeCO3→Fe2O3  (O2,500-600°С, -CO2)

б)  сжигание кокса при горячем дутье:

С(кокс) + O2 (воздух) →СO2   (600—700°С)   СO2 + С(кокс) ⇌ 2СО   (700—1000    °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe2O3→(CO) (FeIIFe2 III)O4→(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

Fе(т)→(C(кокс) 900—1200°С)Fе(ж)  (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe2С и графит.

  Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С.

Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов.

При этом оксиды либо улавливаются в виде отходящих газов (СО2, SО2), либо связываются в легко отделяемый шлак — смесь Са3(РO4)2 и СаSiO3. Для получения специальных сталей в печь вводят легирующие добавки других металлов.

    Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl2→ Fе↓ + Сl2↑ (90°С)  (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь — как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

       Оксид железа(II) FеО. Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе2+ O2-. При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе.

Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок.

Уравнения важнейших реакций:

4FеО ⇌(FeIIFe2 III) + Fе (560—700 °С , 900—1000°С)

FеО + 2НС1 (разб.) = FеС12 + Н2O

FеО + 4НNO3 (конц.) = Fе(NO3)3 +NO2↑  + 2Н2O

FеО + 4NаОН =2Н2O + Nа4FеO3(красн.)  триоксоферрат(II) (400—500 °С)

FеО + Н2 =Н2O + Fе (особо чистое)    (350°С)

FеО + С(кокс) = Fе + СО  (выше 1000 °С)

FеО + СО = Fе + СO2    (900°С)

4FеО + 2Н2O(влага) + O2 (воздух) →4FеО(ОН) (t)

6FеО + O2 = 2(FeIIFe2 III )O4      (300—500°С)

Получение в лаборатории: термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН)2 = FеО + Н2O (150-200 °С)

FеСОз = FеО + СO2 (490-550 °С)

       Оксид дижелеза (III) – железа(II) (FeIIFe2 III )O4 . Двойной оксид. Черный, имеет ионное строение Fe2+(Fе3+)2(O2-)4. Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом.

Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение). По составу отвечает коричневой ржавчине и темной окалине на железе.

Применение брутто-формулы Fe3O4 не рекомендуется. Уравнения важнейших реакций:

2(FeIIFe2 III )O4 = 6FеО + O2   (выше 1538 °С)

(FeIIFe2 III )O4 + 8НС1 (разб.) = FеС12 + 2FеС13 + 4Н2O

(FeIIFe2 III )O4 +10НNO3 (конц.) =3Fе(NO3)3 + NO2↑+ 5Н2O

(FeIIFe2 III )O4 + O2 (воздух) = 6Fе2O3    (450-600°С)

(FeIIFe2 III )O4 + 4Н2 = 4Н2O + 3Fе (особо чистое, 1000 °С)

(FeIIFe2 III )O4 + СО =ЗFеО + СO2  (500—800°C)

(FeIIFe2 III )O4 + Fе  ⇌4FеО (900—1000 °С , 560—700 °С)

    Получение: сгорание железа (см.) на воздухе.

В природе — оксидная руда железа магнетит.

       Оксид железа(III) Fе2О3. Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+)2(O2-)3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе.

Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе2O3 nН2О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом.

Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами).

Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе2O3 = 4(FeIIFe2 III )O4 +O2            (1200—1300 °С)

Fе2O3 + 6НС1 (разб.) →2FеС13 + ЗН2O (t)    (600°С,р)

Fе2O3 + 2NaОН (конц.) →Н2O+ 2NаFеO2 (красн.)  диоксоферрат(III)

Fе2О3 + МО=(МIIFе2III)O4     (М=Сu, Мn, Fе, Ni, Zn)

Fе2O3 + ЗН2 =ЗН2O+ 2Fе (особо чистое, 1050—1100 °С)

Fе2O3 + Fе = ЗFеО    (900 °С)

3Fе2O3 + СО = 2(FeIIFе2III)O4 + СO2  (400—600 °С)

     Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

Fе2(SO4)3 = Fе2O3 + 3SO3    (500-700 °С)

4{Fе(NO3)3 9 Н2O} = 2FеaO3 + 12NO2+ 3O2 + 36Н2O   (600-700 °С)

В природе — оксидные руды железа гематит Fе2O3 и лимонит Fе2O3 nН2O

Гидроксид железа (II) Fе(ОН)2. Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив.

Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа.

Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН)2 = FеО + Н2O  (150-200 °С, в атм.N2)

Fе(ОН)2 + 2НС1 (разб.) =FеС12 + 2Н2O

Fе(ОН)2 + 2NаОН (> 50%) = Nа2[Fе(ОН)4] ↓(сине-зеленый) (кипячение)

4Fе(ОН)2 (суспензия) + O2 (воздух) →4FеО(ОН)↓ + 2Н2O  (t)

2Fе(ОН)2 (суспензия) +Н2O2 (разб.) = 2FеО(ОН)↓ + 2Н2O

Fе(ОН)2 + КNO3 (конц.) = FеО(ОН)↓ + NO↑+ КОН   (60 °С)

   Получение: осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Fе2+ + 2OH (разб.) = Fе(ОН)2↓

Fе2+ + 2(NH3Н2O) = Fе(ОН)2↓+ 2NH4

     Метагидроксид железа FеО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде.

Осаждается из раствора в виде бурого аморфного полигидрата Fе2O3  nН2O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН)2. Промежуточный продукт при ржавлении железа.

Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН)3 не известно (не получено).

Уравнения важнейших реакций:

Fе2O3 . nН2O→(200-250 °С, —H2O) FеО(ОН)→( 560-700° С на воздухе , -H2O) →Fе2О3

FеО(ОН) + ЗНС1 (разб.) =FеС13 + 2Н2O

FeO(OH)→Fe2O3.nH2O -коллоид (NаОН (конц.))

FеО(ОН)→Nа3[Fе(ОН)6] белый , Nа5[Fе(OН)8 желтоватый (75 °С, NаОН( т))

2FеО(ОН) + Fе(ОН)2=( FeIIFe2 III )O4 + 2Н2O         (600—1000 °С)

2FеО(ОН) + ЗН2 = 4Н2O+ 2Fе (особо чистое, 500—600 °С)

2FеО(ОН) + ЗВr2 + 10КОН = 2К2FеO4 + 6Н2O + 6КВr

       Получение: осаждение из раствора солей железа(Ш) гидрата Fе2О3 nН2O и его частичное обезвоживание (см. выше).

В природе — оксидная руда железа лимонит Fе2O3 nН2О и минерал гётит FеО(ОН).

Феррат калия К2FеО4. Оксосоль. Красно-фиолетовый, разлагается при сильном нагревании. Хорошо растворим в концентрированном растворе КОН, реагирует с кипящей водой, неустойчив в кислотной среде. Сильный окислитель.

Качественная реакция — образование красного осадка феррата бария. Применяется в синтезе ферритов — промышленно важных двойных оксидов железа (III) и других металлов.

Уравнения важнейших реакций:

4К2FеO4= 4КFеO2 + 3O2 + 2К2O         (700 °С)

4К2FеO4 + 6Н2O (гор.) =4FeО(ОН)↓ + 8КОН + 3O2↑

FеО42- + 2OН+ (разб.) =4Fе3+ + 3O2↑+10Н2O

FеО42- + 2(NH3. Н2O)     →2FеО(ОН)↓ + N2↑+ 2Н2O+ 4OН—

FеО42- + Ва2+ = ВаFеO4 (красн.)↓         (в конц. КОН)

   Получение: образуется при окислении соединений железа, например метагидроксида FеО(ОН), бромной водой, а также при действии сильных окислителей (при спекании) на железо

Fе + 2КОН + 2КNO3 = К2FеO4 + 3КNO2+ H2O (420 °С)

и электролизе в растворе:

электролиз

Fе + 2КОН (конц.) + 2Н2O→ЗН2↑ + К2FеO4 ( электролиз)

(феррат калия образуется на аноде).

      Качественные реакции на ионы Fе2+ и Fе3+

Обнаружение ионов Fе2+ и Fе3+в водном растворе проводят с помощью реактивов К3[Fе(СN)6] и К4[Fе(СN)6] соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFеIII[FеII (СN)6]. В лаборатории этот осадок называют берлинская лазурь, или турнбуллева синь:

Fе2+ + К+ + [Fе(СN)6]3- = КFеIII[FеII (СN) 6]↓

Fе3+ + К+ + [Fе(СN)6]4- = КFеIII[FеII (СN) 6]↓

Химические названия исходных реактивов и продукта реакций:

К3FеIII[Fе(СN) 6]- гексацианоферрат (III) калия

К4FеIII[Fе (СN) 6]- гексацианоферрат (II) калия

КFеIII[FеII (СN) 6]- гексацианоферрат (II) железа  (Ш) калия

Кроме того, хорошим реактивом на ионы Fе3+ является тиоцианат-ион NСS—, железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

Fе3+ + 6NСS— = [Fе(NСS)6]3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.